Valorisez vos réalisations phares sur People@HES-SO Plus d'infos
PEOPLE@HES-SO – Annuaire et Répertoire des compétences
PEOPLE@HES-SO – Annuaire et Répertoire des compétences

PEOPLE@HES-SO
Annuaire et Répertoire des compétences

Aide
language
  • fr
  • en
  • de
  • fr
  • en
  • de
  • SWITCH edu-ID
  • Administration
« Retour
Hanik Nils

Hanik Nils

Professeur-e HES Associé-e

Compétences principales

Bioprocess data science

Bioprocess digitalization

Industry 4.0

Sustainable polymers

Bioprocess engineering

  • Contact

  • Enseignement

  • Recherche

  • Publications

  • Conférences

Contrat principal

Professeur-e HES Associé-e

Téléphone: +41 58 606 86 79

Bureau: ENP.19.N516

HES-SO Valais-Wallis - Haute Ecole d'Ingénierie
Rue de l'Industrie 23, 1950 Sion, CH
HEI - VS
Domaine
Chimie et sciences de la vie
Filière principale
Ingénierie des Sciences du vivant
Institut
Institut Sciences du vivant
MSc HES-SO en Life Sciences - HES-SO Master
BSc HES-SO en Systèmes industriels - HES-SO Valais-Wallis - Haute Ecole d'Ingénierie
  • Process engineering
  • Chemical Engineering
  • Chemiometry and Data Science
  • Industrial chemistry and biotechnology
  • Automation and data management
  • Physical chemistry

En cours

HTP phenotypic screening platform

Rôle: Co-requérant(s)

Requérant(e)s: Armin Baumschlager, Lonza AG

Financement: Innosuisse Swiss Innovation Agency

Description du projet :

The quantification of protein of interest (POI) is a major bottleneck in high throughput strain development for protein production. This project aims to solve this fundamental challenge. We propose a generally applicable method for the in vivo quantification without permanently modifying the POI.

Equipe de recherche au sein de la HES-SO: Hanik Nils , Nyitrai Mark , Knoops Adrien

Partenaires professionnels: Armin Baumschlager, Lonza AG

Durée du projet: 01.11.2024 - 01.11.2027

Statut: En cours

Terminés

Axe Transformation numérique 2023 - HES-SO Valais-Wallis
AGP

Rôle: Collaborateur/trice

Financement: VS - Direction / Ra&D

Description du projet : Projet inter-disciplinaire pour l'axe Transformation numérique de la HES-SO Valais-Wallis Principalement pour la saisie d'heures pour la coordination et la participation aux séances de l'axe Transformation numérique. Pas de remboursement de frais de déplacement inter-site. Ventilation pour les BSM : W00 - centre de coût 90014 - n°projet (ne pas mettre de pilier 6 dans la ventilation car c'est sur un centre de coûts) Répartition du budget sur les projets socle des instituts au 31.12.2023

Equipe de recherche au sein de la HES-SO: Rey-Gillioz Anne-Christine , Vashdev Dina , Antic Dragana , Loup Jimmy , Martinovic Jelena , Bocchi Yann , Verloo Henk , Mudry Pierre-André , Gabioud Dominique , Zeder David , Schumacher Michael Ignaz , Schegg Roland , Bürki Florian , Zufferey Jeff , Widmer Antoine , Martinez Anja , Manzo Gaetano , Calbimonte Jean-Paul , Darbellay Anne , Hanik Nils , Borgeat Rémy , Calvaresi Davide , Pitteloud Pascal , Piguet Jean-Gabriel , Félix Valérie , Kuhn Alexandre , Loloum Tristan , Fellay Christophe , Percia David Dimitri , Delgado Pamela , Kucharavy Andrei , Imboden Serge , Vallez Cyril

Durée du projet: 01.01.2023 - 31.12.2023

Montant global du projet: 110'300 CHF

Statut: Terminé

FNS IZJFZ2_185638 / 1 Electroplating processes for biodegradable materials obtained from renewable biological resources
AGP

Rôle: Collaborateur/trice

Requérant(e)s: VS - Institut Technologies du vivant, Zinn Manfred, VS - Institut Technologies du vivant

Financement: FNS

Description du projet : IZJFZ2_185638 / 1 BIOPLATE - Electroplating processes for biodegradable materials obtained from renewable biological resources Southeast Asia ' Europe Joint Funding Scheme for Research and Innovation ' Joint Call 2018

Equipe de recherche au sein de la HES-SO: Micaux Fabrice , Zinn Manfred , Miserez Florian , Hanik Nils

Partenaires académiques: VS - Institut Technologies du vivant; Zinn Manfred, VS - Institut Technologies du vivant

Partenaires professionnels: Frauenhofer Institute; Chulalongkorn University Bangkok

Durée du projet: 01.11.2019 - 31.10.2023

Montant global du projet: 323'789 CHF

Statut: Terminé

Axe Transformation numérique 2022 - HES-SO Valais-Wallis
AGP

Rôle: Collaborateur/trice

Financement: VS - Direction / Ra&D

Description du projet : Projet inter-disciplinaire pour l'axe Transformation numérique de la HES-SO Valais-Wallis Principalement pour la saisie d'heures pour la coordination et la participation aux séances de l'axe Transformation numérique. Pas de remboursement de frais de déplacement inter-site. Ventilation pour les BSM : W00 - centre de coût 90014 - n°projet (ne pas mettre de pilier 6 dans la ventilation car c'est sur un centre de coûts) Répartition du budget sur les projets socle des instituts au 31.12.2021

Equipe de recherche au sein de la HES-SO: Rey-Gillioz Anne-Christine , Antic Dragana , Gaudin Déborah , Hannart Stéphanie , Ehrenzeller Luisa , Loup Jimmy , Martinovic Jelena , Bocchi Yann , Verloo Henk , Mudry Pierre-André , Corthay François , Gabioud Dominique , Zeder David , Zahno Silvan , Carrard Sophie , Schegg Roland , Bürki Florian , Doctor Marut , Mantzouranis-Baudat Sophie , Widmer Antoine , Hilfiker Roger , Manzo Gaetano , Calbimonte Jean-Paul , Darbellay Anne , Pocklington Benjamin , Hanik Nils , Amand Axel , Balet Sarah , Dhrangadhariya Anjani , Gay Cathy , Allemand Anouk , Imboden Alain , Kuhn Alexandre , Arulraj Bernard Maxvell , Fellay Christophe , Kullmann Axel , Delaloye Matthieu , Imboden Serge

Durée du projet: 01.01.2022 - 31.12.2022

Montant global du projet: 200'000 CHF

Statut: Terminé

Axe Transformation numérique 2021 - HES-SO Valais-Wallis
AGP

Rôle: Collaborateur/trice

Financement: VS - Direction / Ra&D

Description du projet : Projet inter-disciplinaire pour l'axe Transformation numérique de la HES-SO Valais-Wallis Principalement pour la saisie d'heures pour la coordination et la participation aux séances de l'axe Transformation numérique. Pas de remboursement de frais de déplacement inter-site. Ventilation pour les BSM : W00 - centre de coût 90014 - n°projet (ne pas mettre de pilier 6 dans la ventilation car c'est sur un centre de coûts) Répartition du budget sur les projets socle des instituts au 31.12.2021

Equipe de recherche au sein de la HES-SO: Rey-Gillioz Anne-Christine , Bocchi Yann , Verloo Henk , Mudry Pierre-André , Gabioud Dominique , Montani Bruno , Zeder David , Schegg Roland , Widmer Antoine , Hanik Nils , Kuhn Alexandre , Delaloye Matthieu , Imboden Serge

Durée du projet: 01.01.2021 - 31.12.2021

Montant global du projet: 200'000 CHF

Statut: Terminé

Des biocarburants à base de PHA pour une mobilité durable et neutre en CO2
AGP

Rôle: Collaborateur/trice

Description du projet : Statistic figures for mobility and traffic in 2018 show that cars and leisure activities prevail in passenger transportation. The car is the most common transport means with an average of 10'370 km per year. Each Swiss citizen consumes on average 700 L of fossil fuels yearly and transport accounts for 39% of CO2 emissions of Switzerland. To reduce these emissions, sustainable biofuels are required. Fossil fuels are already blended with biodiesel or bioethanol from renewable resources, but this corresponds to only 3% of total fuel consumption. Furthermore, biofuels production is currently in competition with food sources. Although electro-mobility is emerging, there are still more than 6 million petrol/diesel vehicles in operation in Switzerland - there is an evolution, but not a revolution in the vehicle population. To this end, solutions for sustainable fuels needs to be developed rapidly, which a) can be integrated into the existing infrastructure, b) are CO2-neutral and c) do not compete with food supply. This is where this project comes in: many bacteria naturally accumulate polyhydroxyalkanoate (PHA) in presence of carbon substrate when another nutrient (nitrogen or phosphorus) is limiting growth. We established a bioprocess with microorganisms that are able to produce PHA with up to 80% in the biomass from CO2. We further chemically convert PHA to various biofuel derivatives (yields >90%, scale >100 g). By our approach of depolymerization and/or hydrogenation (from H2 from solar water splitting) we produced biofuels not competing with food & feed sources. The ecologic potential of our new PHA-based biofuel was assessed by a life cycle assessment (LCA) and compared to alternative and existing competing technologies. Test of the new PHA-based biofuels in an engine test bench unveiled the potential of this novel and innovative biofuel production chain. A patent application is pending.

Equipe de recherche au sein de la HES-SO: Pott Julien , Micaux Fabrice , Zinn Manfred , Pilloud Vincent , Dardano Florian , Miserez Florian , Albergati Luce , Nellen Christian , Alber Bastien , Monney Nils , Maruel Frédéric , Sthioul Hervé , Richard Jacques , Hanik Nils , Utsunomia Camila , Amstutz Véronique , Marti Roger

Partenaires académiques: HES-SO Rectorat; VS - Institut Technologies du vivant; hepia inSTI; FR - EIA - Institut ChemTech

Durée du projet: 01.04.2019 - 30.09.2021

Montant global du projet: 270'000 CHF

Statut: Terminé

Moulage par injection de poudres métalliques à l'aide de liants biosourcés
AGP

Rôle: Collaborateur/trice

Requérant(e)s: VS - Institut Systèmes industriels, Carreno-Morelli Efrain, VS - Institut Systèmes industriels

Financement: HES-SO Rectorat

Description du projet : Le but de ce projet est de développer un nouveau procédé pour produire des pièces par moulage par injection de poudres métalliques, à l'aide de liants polymères biosourcés. Les domaines d'application sont l'horlogerie et l'industrie biomédicale. L'originalité du projet réside dans l'utilisation de liants écologiques pour le transport des poudres lors du moulage et pour conférer de la résistance aux corps verts. Ces liants sont retirés par la suite et ne sont donc pas présents dans les pièces frittées, qui sont faites de matériaux conventionnels. Donc, le projet ne concerne pas le développement de nouveaux matériaux mais un nouveau procédé de fabrication. Un avantage du moulage et du micromoulage des pièces net-shape est la quantité réduite de matière qui est nécessaire. Le caractère biodégradable des polymères naturels permet en plus de réduire l'impact sur l'environnement. Haute résistance à la corrosion et absence de ferromagnétisme sont d'une importance majeure dans les domaines d'application visés, Des poudres d'alliages de titane et d'acier inoxydable sans nickel seront utilisées. Les liants seront sélectionnés parmi des polymères générés par fermentation bactérienne, des gélatines d'origine végétale ou animale, de la cellulose, de l'amidon et d'autres polymères naturels. Leur capacité à conférer de la résistance aux corps verts et remplacer des liants conventionnels dérivés du pétrole sera établie. Des pièces de test seront produites et caractérisées. Des procédés récemment développés à la HES-SO Valais seront notamment utilisés: d'une part le moulage par injection d'alliages de titane à partir d'hydrures métalliques, d'autre part la biosynthèse de polyhydroxyalcanoates (PHAs) par fermentation bactérienne. La HEIA-FR contribuera dans la caractérisation, la sélection et la réutilisation des liants, plastifiants, surfactants et solvants. Le contrôle dimensionnel des pièces, l'analyse des défauts par tomographie, le bilan énergétique et l'évaluation des impacts environnementaux du procédé seront réalisés à l'HEPIA. En collaboration avec la Société Soprod SA, on produira pièce complexe des dimensions réduites pour mouvement de montre en quartz, qui permettra d'évaluer le potentiel et les limites des nouveaux feedstocks.

Equipe de recherche au sein de la HES-SO: Girard Hervé , Dabros Michal , Micaux Fabrice , Zinn Manfred , Carreno-Morelli Efrain , Grand Pascal , Sthioul Hervé , Richard Jacques , Chappuis Thierry , Hanik Nils , Rodriguez Arbaizar Mikel

Partenaires académiques: VS - Institut Systèmes industriels; VS - Institut Technologies du vivant; hepia inSTI; FR - EIA - Institut ChemTech; Carreno-Morelli Efrain, VS - Institut Systèmes industriels

Durée du projet: 01.10.2015 - 30.11.2017

Montant global du projet: 133'000 CHF

Statut: Terminé

2023

Degradation kinetics of medium chain length polyhydroxyalkanoate degrading enzyme :
Article scientifique ArODES
a quartz crystal microbalance study

Fabien Millan, Nils Hanik

Frontiers in Bioengineering and Biotechnology,  2023, 11

Lien vers la publication

Résumé:

This study investigates the enzymatic degradation processes of different classes of polyhydroxyalkanoates (PHAs), a group of biopolymers naturally synthesized by various microorganisms. Medium chain length PHAs (mcl-PHAs) are distinguished biopolymers due to their biodegradability and diverse material properties. Using quartz crystal microbalance measurements as a valuable tool for accurate real-time monitoring of the enzymatic degradation process, the research provides detailed kinetic data, describing the interaction between enzymes and substrates during the enzymatic degradation process. Thin films of poly-3-hydroxybutyrate (PHB) and polyhydroxyoctanoate copolymer (PHO), containing molar fractions of about 84% 3-hydroxyoctanoate and 16% 3-hydroxyhexanoate, were exposed to scl-depolymerases from Pseudomonas lemoignei LMG 2207 and recombinant mcl-depolymerase produced in Escherichia coli DH5α harboring the plasmid pMAD8, respectively. Analyses based on a heterogeneous kinetic model for the polymer degradation indicated a six-fold stronger adsorption equilibrium constant of mcl-depolymerase to PHO. Conversely, the degradation rate constant was approximately twice as high for scl-depolymerases acting on PHB. Finally, the study highlights the differences in enzyme-substrate interactions and degradation mechanisms between the investigated scl- and mcl-PHAs.

EXTRACTION OF POLYHYDROXYALKANOATES FROM BIOMASS, AND USES THEREOF
Article professionnel
WO2023104316A1

Hanik Nils

EP4444691A1;WO2023104316A1, 2023

Résumé:

The present invention pertains to the technical field of extracting PHA from biomass, in particular by means of solvents, and treating the extracted PHA to give a desired intermediate. The present invention further relates to using such intermediate as an additive for fuel. For any of these purposes, the applied solvent is an important factor to improve both process efficiency and sustainability, especially on an industrial scale.

Degradation kinetics of medium chain length Polyhydroxyalkanoate degrading enzyme: a quartz crystal microbalance study
Article scientifique

Hanik Nils

Front. Bioeng. Biotechnol., 2023 , vol.  11

Lien vers la publication

Résumé:

This study investigates the enzymatic degradation processes of different classes of polyhydroxyalkanoates (PHAs), a group of biopolymers naturally synthesized by various microorganisms. Medium chain length PHAs (mcl-PHAs) are distinguished biopolymers due to their biodegradability and diverse material properties. Using quartz crystal microbalance measurements as a valuable tool for accurate real-time monitoring of the enzymatic degradation process, the research provides detailed kinetic data, describing the interaction between enzymes and substrates during the enzymatic degradation process. Thin films of poly-3-hydroxybutyrate (PHB) and polyhydroxyoctanoate copolymer (PHO), containing molar fractions of about 84% 3-hydroxyoctanoate and 16% 3-hydroxyhexanoate, were exposed to scl-depolymerases from Pseudomonas lemoignei LMG 2207 and recombinant mcl-depolymerase produced in Escherichia coli DH5α harboring the plasmid pMAD8, respectively. Analyses based on a heterogeneous kinetic model for the polymer degradation indicated a six-fold stronger adsorption equilibrium constant of mcl-depolymerase to PHO. Conversely, the degradation rate constant was approximately twice as high for scl-depolymerases acting on PHB. Finally, the study highlights the differences in enzyme-substrate interactions and degradation mechanisms between the investigated scl- and mcl-PHAs.

2021

Biosynthesis and Sequence Control of scl-PHA and mcl-PHA
Livre
The Handbook of Polyhydroxyalkanoates, Microbial Biosynthesis and Feedstocks (Vol.1) - Ed-. Martin Koller

Hanik Nils

2021,  Boca Raton : Taylor and Francis,  167  p.

Lien vers la publication

2020

Defense Priming in Nicotiana tabacum Accelerates and Amplifies ‘New’ C/N Fluxes in Key Amino Acid Biosynthetic Pathways
Article scientifique

Hanik Nils

Plants (Basel), 2020 , vol.  9, no  851, pp.  1-18

Lien vers la publication

2019

Influence of unusual co-substrates on the biosynthesis of medium-chain-length polyhydroxyalkanoates produced in multistage chemostat
Article scientifique ArODES

Nils Hanik, Camila Utsunomia, Manfred Zinn, Shuzo Arai, Ken'ichiro Matsumoto

Frontiers in Bioengineering and Biotechnology,  2019, vol. 7, article no. 301

Lien vers la publication

Résumé:

A two-stage chemostat cultivation was used to investigate the biosynthesis of functionalized medium-chain-length polyhydroxyalkanoate (mcl-PHA) in the β-oxidation weakened strain of Pseudomonas putida KTQQ20. Chemostats were linked in sequence and allowed separation of biomass production in the first stage from the PHA synthesis in the second stage. Four parallel reactors in the second stage provided identical growth conditions and ensured that the only variable was the ratio of decanoic acid (C10) to an unusual PHA monomer precursor, such as 10-undecenoic acid (C11:1) or phenylvaleric acid (PhVA). Obtained PHA content was in the range of 10 to 25 wt%. When different ratios of C10 and C11:1 were fed to P. putida, the produced PHA had a slightly higher molar ratio in favor of C11:1-based 3-hydroxy-10-undecenoate. However, in case of PhVA a significantly lower incorporation of 3-hydroxy-5-phenylvalerate over 3-hydroxydecanoate took place when compared to the ratio of their precursors in the feed medium. A result that is explained by a less efficient uptake of PhVA compared to C10 and a 24% lower yield of polymer from the aromatic fatty acid (yPHA−MPhVA = 0.25). In addition, PHA isolated from cultivations with PhVA resulted in the number average molecular weight Mn two times lower than the PHA produced from C10 alone. Detection of products from PhVA metabolism in the culture supernatant showed that uptaken PhVA was not entirely converted into PHA, thus explaining the difference in the yield polymer from substrate. It was concluded that PhVA or its related metabolites increased the chain transfer rate during PHA biosynthesis in P. putida KTQQ20, resulting in a reduction of the polymer molecular weight.

Microplastics :
Article scientifique ArODES
from anthropogenic to natural

Nils Hanik, Véronique Amstutz, Manfred Zinn

CHIMIA International Journal for Chemistry,  2019, vol. 73, no. 10, pp. 841-843

Lien vers la publication

Résumé:

In the context of the ongoing discussion of accumulating plastic debris in the environment, this article summarizes recent reports on the topic of microplastic pollution. Moreover, it gives an overview of the results from the activities of the research group for Biotechnology and Sustainable Chemistry of the Institute of Life Technologies at the HES-SO ValaisWallis concerning the fabrication of biodegradable microstructured plastics and microplastics from renewable resources. Polyhydroxyalkanoate biopolyesters are proposed as one suitable alternative in specific applications to reduce the use of persistent plastics. Standard techniques are described that have been successfully applied to produce porous materials, fibers and particles in the micro- and nanometer range.

Tailored biosynthesis of polyhydroxyalkanoates in chemostat cultures
Chapitre de livre ArODES

Nils Hanik, Julien Pott, Cmaila Utsunomia, Manfred Zinn

Dans Bruns, Nico, Loos, Katja, Methods in Enzymology  (25 p.). 2019,  Amsterdam : Elsevier

Lien vers la publication

Résumé:

Polyhydroxyalkanoates (PHAs) are accumulated intracellularly by many bacteria and serve as a carbon and energy storage compound. PHAs are polyesters of high molecular weight and can be isolated by solvent extraction and precipitation in antisolvents. The material properties of PHAs are of great interest due to the inherent biodegradability and excellent biocompatibility. To date, more than 150 different PHA monomers have been described in literature and it has been found that the monomeric unit composition significantly influences the physico-chemical properties of PHAs. The monomer composition may be controlled to some extent by the choice of the PHA production strain but also by the cultivation conditions and the carbon substrate/PHA precursor supply. In previous studies, it has been shown that the most reproducible production method of PHA is the chemostat cultivation of suitable bacteria under multiple nutrient limited growth conditions. This chapter is dedicated to provide step-by step instructions to produce PHAs in a chemostat culture and specifically describes how the composition of PHA copolymers can be tailored during biosynthesis, as well as a set of analytical tools and methods to characterize PHAs.

2023

Integrated experimental and digital platform for bioprocess optimization
Conférence

Hanik Nils

AI Days Lausanne, Swiss AI Center, 14.02.2023 - 15.02.2023, Lausanne, Switzerland

Lien vers la conférence

2022

Advanced Manufacturing Lab - HES-SO Valais and Lonza collaboration overview
Conférence

Hanik Nils

Innovation Day, BioArk Monthey, 15.09.2022 - 15.09.2022, Monthey, Switherland

Lien vers la conférence

Using a quartz crystal microbalance to study enzymatic degradation of biopolyesters
Conférence

Hanik Nils

International Symposium on Biopolymers, 13.09.2022 - 16.09.2023, Sion

Lien vers la conférence

Electroplating and environmentally friendly pre-treatment processes for biodegradable materials
Conférence

Hanik Nils

Biocatalysis for the biological transformation of polymer science, 27.06.2022 - 29.06.2022, Cologne, Germany

Lien vers la conférence

2019

Influence of unusual co-substrates on biosynthesis of medium-chain-length polyhydroxyalkanoates
Conférence

Hanik Nils

European Symposium on Biopolymers, 25.09.2019 - 27.09.2019, Straubing, Germany

Lien vers la conférence

Mikroplastik – von anthropogen bis natürlich
Conférence

Hanik Nils

37. Swiss SCC Winterseminar, 03.02.2019 - 03.02.2019, Davos, Switzerland

Réalisations

Médias et communication
Nous contacter
Suivez la HES-SO
linkedin instagram facebook twitter youtube rss
univ-unita.eu www.eua.be swissuniversities.ch
Mentions légales
© 2021 - HES-SO.

HES-SO Rectorat