Valorisez vos réalisations phares sur People@HES-SO Plus d'infos
PEOPLE@HES-SO – Annuaire et Répertoire des compétences
PEOPLE@HES-SO – Annuaire et Répertoire des compétences

PEOPLE@HES-SO
Annuaire et Répertoire des compétences

Aide
language
  • fr
  • en
  • de
  • fr
  • en
  • de
  • SWITCH edu-ID
  • Administration
« Retour
Hugon Sylvain

Hugon Sylvain

Professeur HES associé

Compétences principales

Conception mécanique

Additive and hybrid manufacturing

Conception p. fabrication additive

Science des matériaux

Systèmes médicaux

Robotic

Microsystems

  • Contact

  • Enseignement

  • Recherche

  • Publications

  • Conférences

Contrat principal

Professeur HES associé

Téléphone: +41 24 557 64 34

Bureau: R08

Haute école d'Ingénierie et de Gestion du Canton de Vaud
Route de Cheseaux 1, 1400 Yverdon-les-Bains, CH
HEIG-VD
Institut
Institut de conception mécanique et technologie des matériaux (COMATEC)
MSc HES-SO en Engineering - HES-SO Master
  • Conception de produits
MSc HES-SO en Integrated Innovation for Product and Business Development - Innokick - HES-SO Master
  • Conception de produits
  • Optimisation de procédés industriels
  • conception frugale
BSc HES-SO en Systèmes industriels - Haute école d'Ingénierie et de Gestion du Canton de Vaud
  • CAO
  • Procédés de fabrication
  • Eléments de construction
  • Fabrication additive - Techniques d'impression 3D

Terminés

chèque Innosuisse Otarcia Sàrl N. 40514.1 INNO-ENG
AGP

Rôle: Requérant(e) principal(e)

Financement: Innosuisse

Description du projet : Nous souhaitons utiliser la fabrication additive afin de produire des très petites séries de boites de montres personnalisées pour la haute-horlogerie. La technologie de fabrication additive nous offre la possibilité de personnaliser la boite pour chaque client par des inscriptions /médaillons et autres potentiels décors en 3D. La forme, le poids et les caractéristiques mécaniques peuvent aussi être optimisées voire complétement changées.

Equipe de recherche au sein de la HES-SO: Hugon Sylvain , Berns Siddartha

Partenaires académiques: COMATEC; Hugon Sylvain, COMATEC

Durée du projet: 25.09.2019 - 24.09.2020

Montant global du projet: 15'000 CHF

Statut: Terminé

2025

Additive manufacturing of a 3D-segmented plastic scintillator detector for tracking and calorimetry of elementary particles
Article scientifique ArODES

Tim Weber, Andrey Boyarintsev, Umut Kose, Botao Li, Davide Sgalaberna, Tetiana Sibilieva, Johannes Wüthrich, Siddartha Berns, Eric Boillat, Till Dieminger, Matthew Franks, Boris Grynyov, Sylvain Hugon, Carsten Jaeschke, André Rubbia

Communications Engineering,  2025, 4, 1, 41

Lien vers la publication

Résumé:

Plastic scintillators, segmented into small, optically isolated voxels, are used for detecting elementary particles and provide reliable particle identification with nanosecond time resolution. Building large detectors requires the production and precise alignment of millions of individual units, a process that is time-consuming, cost-intensive, and difficult to scale. Here, we introduce an additive manufacturing process chain capable of producing plastic-based scintillator detectors as a single, monolithic structure. Unlike previous manufacturing methods, this approach consolidates all production steps within one machine, creating a detector that integrates and precisely aligns its voxels into a unified structure. By combining fused deposition modeling with an injection process optimized for fabricating scintillation geometries, we produced an additively manufactured fine-granularity plastic scintillator detector with performance comparable to the state of the art, and demonstrated its capabilities for 3D tracking of elementary particles and energy-loss measurement. This work presents an efficient and economical production process for manufacturing plastic-based scintillator detectors, adaptable to various sizes and geometries.

2024

A study of fit and friction force as a function of the printing process for FFF 3D-printed piston–cylinder assembly
Article scientifique ArODES

Philippe Passeraub, Quentin Allen, Elizabeth Clark, Michael Miles, Siddartha Berns, Maija Pearson, Sterling Allred, Jonah Brooks, Sylvain Hugon

Journal of Manufacturing and Materials Processing,  2024, 8, 6, 249

Lien vers la publication

Résumé:

Current 3D printing processes for polymer material extrusion are limited in their accuracy in terms of dimension, form, and position. For precise results, post-processing is recommended, like with assembled parts such as pistons and cylinders wherein axial mobility is desired with low friction force and limited radial play. When no post-processing step of the printed parts is accomplished, the fit and the friction force behavior are strongly dependent on the process performances. This paper presents a study on parameters of significance and their effects on sliding and running fits as well as their friction forces for fused filament fabrication of such assemblies. A series of experiments were performed with multiple factors and levels, including the position or layout of printed objects, their layer thickness, the material used, the use of aligned or random seam, and the printer type. Piston–cylinder pairs were printed, measured, assembled, and tested using a tensile test frame. A mathematical model was developed to describe the oscillating friction force behavior observed. This study presents the feasibility and limitations of producing piston–cylinder assemblies with reduced play and friction when using appropriate conditions. It also provides recommendations to obtain and better control a desired running and sliding fit.

2023

3D printing of inorganic scintillator-based particle detectors
Article scientifique ArODES

T. Sibilieva, V. Alekseev, Sergey Barsuk, Siddartha Berns, Eric Boillat, I. Boiaryntseva, A. Boiaryntsev, A. Carbone, A. De Roeck, S. Dolan, T. Driuk, A. Gendotti, I. Gerasymov, B. Grynyov, Sylvain Hugon, U. Kose, O. Opolonin, A. Rubbia, D. Sgalaberna, M. Sibilyev, S. Tretyak, T. Weber, J. Wuthrich, X. Y. Zhao

Journal of Instrumentation,  2023, vol. 18, article no. P03007

Lien vers la publication

Résumé:

Inorganic scintillators are widely used for scientific, industrial and medical applications. The development of 3D printing with inorganic scintillators would allow the fast creation of detector prototypes for the registration of ionizing radiation, such as alpha, beta and gamma particles in thin layers of active material, and X-ray radiation. This article reports on the technical work and scientific achievements that aimed at developing a new inorganic scintillation filament to be used for the 3D printing of composite scintillator materials: study and definition of the scintillator composition; development of the methods for the inorganic scintillator filament production and further implementation in the available 3D printing technologies; study of the impact of the different 3D printing modes on the material scintillation characteristics. Also, 3D-printed scintillators can be used to produce combined detectors for high-energy physics.

2022

Additive manufacturing of fine-granularity optically-isolated plastic scintillator elements
Article scientifique ArODES

Siddartha Berns, Eric Boillat, A. Boyarintsev, Albert de Roeck, Stephen Dolan, Adamo Gendotti, Borys Grynyov, Sylvain Hugon, Umut Kose, S. Kovalchuk, B. Li, T. Sibilieva, Davide Sgalaberna, Thomas Weber, Johannes Wuthrich, X. Y. Zhao

Journal of Instrumentation,  2022

Lien vers la publication

Résumé:

Plastic scintillator detectors are used in high energy physics as well as for diagnostic imaging in medicine, beam monitoring on hadron therapy, muon tomography, dosimetry and many security applications. To combine particle tracking and calorimetry it is necessary to build detectors with three-dimensional granularity, i.e. small voxels of scintillator optically isolated from each other. Recently, the 3DET collaboration demonstrated the possibility to 3D print polystyrene-based scintillators with a light output performance close to that obtained with standard production methods. In this article, after providing a further characterization of the developed scintillators, we show the first matrix of plastic scintillator cubes optically separated by a white reflector material entirely 3D printed with fused deposition modeling. This is a major milestone towards the 3D printing of the first real particle detector. A discussion of the results as well as the next steps in the R&D is also provided.

La constellation inclusive :
Article professionnel ArODES
pour coconstruire une pédagogie de l'égalité dans une perspective intersectionnelle et de conscientisation

Sandra V. Constantin, Emmanuelle Guillaume-Gentil, Amel Mahfoudh, Clothilde Palazzo-Crettol, Séverine Rey, Carola Togni, Sylvain Hugon

Revue [petite] enfance,  2022, no. 137, pp. 89-104

Lien vers la publication

2020

Characterization, mechanical properties and dimensional accuracy of a Zr-based bulk metallic glass manufactured via laser powder-bed fusion
Article scientifique ArODES

Navid Sohrabi, Jamasp Jhabvala, Güven Kurtuldu, Mihai Stoica, Annapaola Parrilli, Siddartha Berns, Efthymios Polatidis, Steven Van Petegem, Sylvain Hugon, Antonia Neels, Jörg F. Löffler, Roland E. Logé

Materials Design,  2020, vol. 199, article no. 109400

Lien vers la publication

Résumé:

Bulk metallic glasses (BMGs) are high-strength, highly elastic materials due to their disordered atomic structure. Because BMGs require sufficiently high cooling rates to bypass crystallization, laser-based additive manufacturing (AM) methods have recently been employed for the fabrication of BMGs. In this study, we present an optimized Laser Powder-Bed Fusion (LPBF) process on a Zr-based BMG (Zr59.3Cu28.8Al10.4Nb1.5, in at.%), with a focus on characterization, mechanical properties, and dimensional accuracy. A volumetric density of 99.82% was achieved. Although the sample was qualified as amorphous via laboratory X-ray diffraction experiments, a more meticulous study using synchrotron radiation revealed nanocrystals in the heat-affected zones (HAZs) of the melt pool. Fast differential scanning calorimetry (FDSC) and numerical simulations were then employed to illustrate the mechanism of crystallization. The LPBF-processed alloy revealed excellent mechanical properties, such as high hardness, wear resistance, compressive strength, and flexural strength. Apart from vein-like patterns, the fracture surfaces of the compression test samples showed liquid-like features, which indicate a significant local temperature increase during fracture. The dimensional accuracy was assessed with a benchmark exhibiting complex geometrical features and reached at least 40 μm. The results indicate that LPBF processing is a promising route for the manufacturing of BMGs for various applications.

A novel polystyrene-based scintillator production process involving additive manufacturing
Article scientifique ArODES

Siddartha Berns, A. Boyarintsev, Sylvain Hugon, U. Kose, D. Sgalaberna, A. De Roeck, A. Lebedynkiy, T. Sibilieva, P. Zhmurin

Journal of Instrumentation,  2020, vol. 15

Lien vers la publication

Résumé:

Plastic scintillator detectors are widely used in particle physics thanks to the very good particle identification, tracking capabilities and time resolution. However, new experimental challenges and the need for enhanced performance require the construction of detector geometries that are complicated using the current production techniques. In this article we propose a new production technique based on additive manufacturing that aims to 3D print polystyrene-based scintillator. The production process and the results of the scintillation light output measurement of the 3D-printed scintillator are reported.

2016

Egalité et/ou gestion de la diversité :
Conférence ArODES
quel impact du traitement de la différence sur une population fortement discriminée? Proposition d’étude du cas des personnes trans*

Florian Dufour, Sylvain Hugon, Jocelyne Majo, Cécile Frank, Céline Desmarais

Actes de la 12e Rencontres Internationales de la Diversité (RID) 2016

Lien vers la conférence

Réalisations

Médias et communication
Nous contacter
Suivez la HES-SO
linkedin instagram facebook twitter youtube rss
univ-unita.eu www.eua.be swissuniversities.ch
Mentions légales
© 2021 - HES-SO.

HES-SO Rectorat