PEOPLE@HES-SO - Le Répertoire des compétences

    Connexion
  • Switch AAI
  • Administration

  • fr
  • en
  • de
PEOPLE@HES-SO - Le Répertoire des compétences
  • Switch AAI
  • Administration
Recherche
Zwicky Daia

Zwicky Daia

Ordentlicher Professor FH/Institutsleiter


COMPÉTENCES PRINCIPALES

Structures du génie civil

Construction écologique

Matériaux multifonctionnels

Analyse structurale

Eléments mixtes & hybrides

Modélisation matérielle

Structures existantes


  • Flèche sous-menu Contact

    Contact

  • Flèche sous-menu Enseignement

    Enseignement

  • Flèche sous-menu Ra&D

    Ra&D

  • Flèche sous-menu Publications

    Publications

  • Flèche sous-menu Conférences

    Conférences

Contrat principal

Ordentlicher Professor FH/Institutsleiter

Téléphone: +41 26 429 69 50

Bureau: D40.03

Haute école d'ingénierie et d'architecture de Fribourg
Boulevard de Pérolles 80, 1700 Fribourg, CH
Haute école d'ingénierie et d'architecture de Fribourg

Institut
iTEC - Institut des technologies de l'environnement construit

CV complet et autres informations potentiellement utiles à trouver sur https://www.researchgate.net/profile/Daia_Zwicky/experience

MSc HES-SO en Ingénierie du territoire - HES-SO Master

  • Encadrement des thèses de Master

MSc HES-SO en Engineering - HES-SO Master

  • Évaluation de l'état des bâtiments (module T-Build)

En cours

Planchers en bois hybrides bi-axiales multifonctionnels

Rôle: Requérant(e) principal(e)

Financement: FR - EIA - Institut iTEC; FR - EIA - Général école Ra&D

Description du projet : Le projet veut prouver la faisabilité technique d'un système de plancher, composé de bois et béton allégé par le bois (bois-béton « WooCon »), comme alternative aux prédalles en béton. Il est composé de multiples petites sections en bois massif comme coffrage perdu autoporteur, d'où les connexions sont optimisées par fabrication digitale, finalement intégrées dans un bois-béton monolithique coulé sur place, fournissant aussi des performances importantes physiques du bâtiment.

Equipe de recherche au sein de la HES-SO: Buri Hans, Zwicky Daia, Niederhäuser Elena-Lavinia, Macchi Niccolò

Partenaires académiques: FR - EIA - Institut ENERGY; FR - EIA - Institut TRANSFORM

Durée du projet: 21.08.2019 - 31.08.2021

Montant global du projet: 149'900 CHF

Statut: En cours


Einsparpotenzial an Grauer Energie und Treibhausgasemissionen von Gebäuden - Ein Leitfaden für Fachplaner, Architekten und Berater

Rôle: Requérant(e) principal(e)

Financement: FR - EIA - Général école Ra&D; FR - EIA - Institut iTEC; OFEN (Office fédéral de l'énergie); FR - EIA - Institut iTEC

Description du projet : Wie ein tiefer oder gar verschwindender Energieverbrauch von Gebäuden in der Betriebsphase erreicht werden kann, ist heute - abgesehen vom 'performance gap' - bekannt. Die Einsparungen erfolgen jedoch klar zulasten der Baustoffe und ihres Verbrauchs an nicht erneuerbarer Primärenergie PEne ('Graue Energie') und zugehöriger Treibhausgasemissionen THGE. Das Endausmass des Baustoffverbrauchs wird durch Entscheidungen in den jeweiligen Planungsphasen eines Gebäudes mehr oder weniger stark, günstig oder ungünstig beeinflusst. Progressive Bauherren und Fachplaner möchten oft schon wissen, welches ökologische Einsparpotenzial in welcher Planungsphase mit dem Einsatz alternativer 'grüner' Baustoffe (noch) vorhanden ist. Schliesslich wird trotzdem oft auf Standardlösungen zurückgegriffen (d.h. Beton und Mauerwerk); alternative Baustoffe haben damit kaum Chancen auf Umsetzung, auch wenn ihr Einsatz in Tragwerk und nicht-tragendem Ausbau im Rahmen der Energiestrategie 2050 immer wichtiger wird. Ihre ökologische Beurteilung ist mit den gegenwärtigen Grundlagen jedoch kaum machbar und ihr Potenzial kann damit nicht vollständig ausgeschöpft werden. Das vorgeschlagene Projekt hat daher zwei Zielsetzungen: a) Benchmarks inkl. möglicher Variationen von PEne / THGE für die Erstellung von Gebäuden in der jeweiligen Planungsphase, und b) vereinfachte Vorgehensweisen zur Erfassung einer Grössenordnung von PEne / THGE für nicht standardisierte Baustoffe. Für die Vorstudienphase werden MINERGIE-ECO-Projekte nach geeigneten Projektkennzahlen ausgewertet. Anhand von Fallbeispielen mit verschiedenen Tragstrukturtypen wird das Einsparpotenzial im Vorprojekt aufgezeigt. Mittels Auswertungen für die gängigsten Bauteile und Baustoffe und des Vergleichs mit ökologisch optimierten Baustoffen wird an den Fallbeispielen das Einsparpotenzial im Bauprojekt ermittelt. Dank der Ermittlung in den Fallbeispielen des Anteils des Innenausbaus an der Gesamtbilanz wird das Einsparpotenzial im Ausführungsprojekt aufgezeigt. Diese Auswertungen werden ergänzt mit dem Erarbeiten einer Methodik für die vereinfachte Ökobilanzierung von alternativen (Low-Tech-) und Recycling-Baustoffen, welche auf den Entwurf neuer Bauteile mit potenziell weiter reduziertem ökologischem Impact für die Stufe Bauprojekt angewendet wird. Die Studienresultate werden in einem Bericht dargelegt und in einem Leitfaden in D, F & I zum Optimierungspotenzial bezüglich PEne / THGE in der Erstellung von Gebäuden und gängiger Bauteile auf verschiedenen Planungsstufen kondensiert. Die Studienresultate können weiter als Grundlage dienen für die Ergänzung von Ökobilanzdatenbanken, die Entwicklung alternativer Neubaulösungen und als Ausgangslage für spezifische Ergänzungen des Vorgehens für den Umbau.

Equipe de recherche au sein de la HES-SO: Pathé Julien, Zwicky Daia, Meszes Adam Attila, Schaller Marc, Uboldi Paride, Macchi Niccolò

Partenaires académiques: intep GmbH

Durée du projet: 13.04.2018 - 31.12.2020

Montant global du projet: 99'000 CHF

Statut: En cours


Verstärken von Fahrbahnplatten mit Textilbeton

Rôle: Requérant(e) principal(e)

Financement: OFROU; FR - EIA - Institut iTEC; FR - EIA - Institut iTEC

Description du projet : Das Projekt arbeitet den Kenntnisstand zu Verstärkungen von Betonbauteilen mit Textilbeton gezielt für Kunstbauten auf - gegliedert nach Bauteil und hauptsächlicher Beanspruchungsart - und stellt den Projektverantwortlichen damit Bemessungsgrundlagen zur Verfügung. Die Einpassung dieser relativ neuen Verstärkungsmethode in Schweizer Gepflogenheiten und Regelwerke bei der Tragwerksanalyse und Bemessung werden aufgezeigt. Kenntnislücken für die spezifische Anwendung von Textilbetonverstärkungen auf Betonbauteile von Kunstbauten werden indentifiziert und allenfällige weitere Forschungsbedürfnisse formuliert.

Equipe de recherche au sein de la HES-SO: Zwicky Daia, Muresan Alex-Manuel

Durée du projet: 17.01.2017 - 31.12.2020

Montant global du projet: 128'552 CHF

Statut: En cours


Wood-based concrete: building construction with composite elements of wood-concrete compounds and timber

Rôle: Collaborateur/trice

Financement: HES-SO Rectorat; Vial SA; FR - EIA - Général école Ra&D; JPF Construction SA; Erne Holzbau AG; TU Wien - ITI; FR - EIA - Institut iTEC; FNS; FR - EIA - Institut iTEC

Description du projet : This project focuses on the development of new principles for load-bearing elements made of wood or wood-based concrete. Alongside the improved static load-bearing capacity, these innovative building elements also offer economic and ecological ad-vantages (weight reduction, thermal and acoustic insulation, fire protection, heat storage, reusability as source of heat and electricity). Background Cement-bonded wood products are today mainly used for non-load-bearing purposes, e.g. as noise or fire protection panels. However, wood-based concrete in a new mixture could also be used in ceilings and wall elements and could thus make a contribution also to load-bearing. That said, knowledge about load-bearing elements involving wood-based concrete is still too limited for practical application to go ahead. In particular, data is lacking on the composition of wood-based concrete for specific uses, on the nature of the joints to be used, on how whole ceilings and wall elements can be planned economically and on the dimensioning methods to be applied to these elements. Aim The project aims to develop mixtures of lightweight concrete with different pre-treated wood components and to assess their suitability as load-bearing materials. The results will flow into a conceptual structural design of ceilings and wall elements and will be complemented by experiments with joints for the individual components. Applying dimensioning methods that have rarely been used before in wood construction, the researchers will predict the bearing capacity of entire building elements through to fracture and study it in load tests at a large scale. Practice-oriented dimensioning approaches will be derived from the results. Based on further pre-experiments and case studies, the researchers will assess other expected ad-vantages, e.g. for thermal insulation and storage, for fire and noise protection, and with regard to economic competitiveness. Significance Load-bearing elements containing wood-based concrete are lighter in weight and offer integrated noise and fire protection. Thanks to the high share of wood, these innovative building elements are largely based on renewable resources and provide thermal insulation and storage. They can moreover be used as source of heat and electricity after their dismantling. The dimensioning methods to be developed'so far limited to the traditional building materials steel and reinforced concrete'could make construction with wood and wood-based products more efficient and thus contribute to the appropriate use of Swiss forests and Swiss wood.

Equipe de recherche au sein de la HES-SO: Moix Jonathan, Andrey Jean-Paul, Monney Isabelle, Delaquis Dominique, Zwicky Daia, Meszes Adam Attila, Uboldi Paride, Herren Christoph, Corpataux Dominique, Raetzo Raphaël, Macchi Niccolò, Ropp Julien

Partenaires académiques: IGT

Durée du projet: 23.12.2016 - 31.12.2020

Statut: En cours


For more projects, please visit iTEC website

Rôle: Requérant(e) principal(e)

Description du projet :

https://www.heia-fr.ch/fr/recherche-appliquee/instituts/itec/recherche/ > structures

Equipe de recherche au sein de la HES-SO: Zwicky Daia

Statut: En cours


Terminés

Développement de compétences de l'iTEC au service ultérieur du SLL

Rôle: Requérant(e) principal(e)

Financement: FR - EIA - Général école Ra&D

Description du projet : Cette famille de projet sert à l'acquisition et à l'approfondissement des compétences disponibles à l'iTEC, dans les domaines suivantes: - la caractérisation mécanique des matériaux de construction et sa modélisation numérique, grâce à des essais de laboratoire et des techniques de mesure fiables et exhaustives, de l'échelle du matériau (éprouvettes) à l'échelle des structures; - les villes "éponges" qui sont capables de gérer la qualité et la quantité d'eau, grâce à différentes techniques (notamment celles liées à la végétalisation), ainsi que la température environnant les bâtiments et les espaces de vie, à l'échelle de la parcelle; - l'exploration des applications structurales des semi-produits à la base de fibres de basalte, principalement en éléments hybrides avec d'autres matériaux, de la conception constructive à l'analyse structurale et le dimensionnement jusqu'aux détails constructifs. Ses activités s'inscrivent ainsi et seront utiles pour une gamme d'activités ultérieures de recherche appliquée et de développement du Smart Living Lab.

Equipe de recherche au sein de la HES-SO: Moix Jonathan, Bullinger Géraldine, Redaelli Dario, Spahni Bruno, Zwicky Daia, Favre Boivin Fabienne, Froidevaux Manuel, Uboldi Paride, Labiouse Vincent, Pfister Michael, Albertoni Loran, Bénet Loïc, Muresan Alex-Manuel, Frei Benjamin, Chamoun Sabine, Macchi Niccolò

Partenaires professionnels: FR - EIA - Institut iTEC; FR - EIA - Institut iTEC

Durée du projet: 20.03.2019 - 20.04.2020

Montant global du projet: 60'000 CHF

Statut: Terminé


Multifunctionality features of alternative structural slab components made of wood-based light-weight concrete and technical flax-fiber textiles

Rôle: Requérant(e) principal(e)

Financement: FR - EIA - Général école Ra&D; SLL HEIA-FR

Description du projet : The project targets at evaluating relevant multifunctionality properties and ecological impacts of new slab elements to be developed. It aims at identifying thermal properties of newly developed wood-based "bio-concretes", and at evaluating impacts of different conceptual designs for hybrid slabs on overall energy consumption of a case study building and eco-balance. The projects also envisages fabrication of a demonstrator, in view of a potential commercialization of the construction system.

Equipe de recherche au sein de la HES-SO: Vuarnoz Didier, Zwicky Daia, Meszes Adam Attila, Schaller Marc, Chiarelli Maxime, Bourrier Hervé, Monnard Jacques, Raetzo Raphaël, Niederhäuser Elena-Lavinia

Partenaires académiques: FR - EIA - Institut iTEC; ETHZ / IBI; Niederhäuser Elena-Lavinia, FR - EIA - Institut ENERGY

Durée du projet: 02.07.2019 - 31.10.2019

Montant global du projet: 13'000 CHF

Statut: Terminé




2020

Suitability evaluation of structural analysis approaches for determining the flexural capacity of reinforced concrete elements strengthened with textile-reinforced mortar ArODES Scientifique

Muresan Alex, Zwicky Daia

Structural Engineering International,

Lien vers la publication

Résumé:

This study presents the evaluation of various structural analysis approaches to theoretically determine the bending resistance of flexural reinforced concrete elements strengthened with textile-reinforced mortar (TRM), which are gaining more and more attention as external strengthening layers. To assess the increase in capacity due to strengthening, multiple experimental studies from the literature were evaluated. Different structural analysis approaches for determining the flexural strength increase were tested against the experimental data. Finally, the consideration of strain limits for the textile layers, as also applied in the dimensioning of externally bonded fiber-reinforced polymers, proved to be the most reliable analytical approach.


Mechanical properties of organic-based lightweight concretes and their impact on economic and ecological performances ArODES Scientifique

Zwicky Daia

Construction and Building Materials, 2020, vol. 245, article no. 118413

Lien vers la publication

Résumé:

This study aimed at improving mechanical properties of wood-cement compounds, basically consisting of Portland cement and of up to 60% of untreated sawdust, through an aggregate skeleton made of organic aggregates (fruit pits, crushed nut shells) and lightweight aggregates (expanded clay and glass). Experimental results show that workability and strength development can be notably improved. Compressive strength can be doubled, and elastic modulus can be tripled. All properties exhibited a marked influence of organic aggregate content. Contextualized comparisons show that the developed alternative lightweight concretes (LC) can be economically competitive with regular LC while the eco-balance is reduced by 70–80%.




2018

Construction with wood-cement compounds and timber ArODES Chapter

Zwicky Daia, Macchi N., Fridez A., Sciboz V., Maeder M., Medziti M.

Dans The fifth fib-Congress, Betonbau in der Schweiz = Construction en béton en Suisse = Structural Concrete in Switzerland (1 p.). 2018, Lausanne : fib-CH, p/a EPFL ENAC IBETON

Lien vers la publication

Résumé:

Pourable lightweight wood-based concretes (or wood-cement compounds, WCCs, respectively) were developed and assessed with respect to struc tural properties, targeting their structural combination with timber. Composite slab and wall elements were conceived and evaluated experimentally and analytically in full-scale tests up to rupture and for long-term behaviour. Practical structural design approaches were also derived. Further assessments targeted properties of thermal and fire protection, recyclability, eco-balance and economic competitiveness. Possible use in residential, office and school buildings was proven.


A solid foundation for a new flexible structure in IABSE’s technical activities ArODES Professionnel

Zwicky Daia

Structural Engineering International, 2018, vol. 28, no. 2, p. 109

Lien vers la publication




2017

Publications antérieures Scientifique

Daia Zwicky

Multiples, 2017

Lien vers la publication

Résumé:

A trouver sur ResearchGate !




2019

Anchorages of stirrups under transverse tension in concrete : development of a design model ArODES Conference

Daia Zwicky

Proceedings of 2019 IABSE Confress - The Evolving Metropolis, 4-6 September 2019, New York City, USA

Lien vers la publication

Résumé:

According to Swiss code SIA 262 "Concrete structures", stirrups of reinforced concrete beams must "surround the tensile longitudinal reinforcement" and must "be anchored to mobilize the static height of internal forces". For existing concrete structures, Swiss code SIA 269/2 provides stirrup detailing requirements while limiting these directives for stirrup anchorage to the compression zone. In zones of negative bending, these requirements are often not satisfied for execution reasons. This question is addressed in a largely experimental Ra&D project. Anchorage tests were performed and analyzed, with a total of 144 tests on 9 concrete beams. These underwent a longitudinal tensile force up to 1’000 kN to simulate transverse cracking at stirrup anchorages in negative flexure zones. The study parameters are crack width (0, 0.4 and 0.9 mm), stirrup diameter (10 and 14 mm), bar ribbing (smooth and ribbed) and hook angle (90°, 135°, 180° and straight bars). A design model based on the "tension chord model" (TCM) developed at ETH Zurich is proposed. This simple and practical design model has proved its effectiveness to consider bond effects. Reduction factors for bar diameter (kØ), relative bar ribbing (kfR), hook effect (kθ) and crack width (kw) were taken into account for calibration. Results of analytical calculations are coherent with experimental tests.


Experimental development of alternative lightweight concretes ArODES Conference

Daia Zwicky

Proceedings of 2nd International Conference of Sustainable Building Materials (ICSBM 2019), 12-15 August 2019, Eindhoven, The Netherlands

Lien vers la publication

Résumé:

It is difficult to compete with normalweight concrete: it is pourable, usually self-compacting, hardening reasonably fast, cheap and locally available in large quantities. Its excellent fire protection and good acoustic insulation for airborne sound are further advantages in construction. But, regular concrete is very heavy, being disadvantageous for transportation and hoisting and results in the fact that a concrete structure predominantly supports its self-weight. Also, concrete qualities applied in building construction usually provide a far too high strength, as geometry is often dictated by constructability (minimum dimensions for concreting). Concrete further provides poor thermal insulation and unpleasant user experience (it “feels” cold), and is rather challenging to recycle. Last but not least, concrete manufacture is largely based on non-renewable resources and has a high environmental impact. Thus, alternative lightweight concretes should be further developed. Starting from earlier developments on “wood-based concrete” (or wood-cement compounds WCCs), essentially consisting of Portland cement (PC) and other mineral binders and of up to 60% of untreated sawdust, this study aimed at improving their mechanical properties by integrating an aggregate skeleton from organic aggregates (fruit pits, crushed nut shells) and lightweight aggregates from largely available or renewable resources (expanded clay and glass). 15 different recipes for “WooCon” (from wood-concrete) were designed and evaluated, in a first phase, for possible self-compaction as a basic fresh-state requirement for their targeted application in prefabrication. In a second phase, basic mechanical properties of 5 retained WooCon recipes were evaluated, by testing elastic modulus, compressive strength, and their development over 28 days as a further important prefabrication requirement. These results were also used to modify predictive expressions for correlating compressive strength and elastic modulus. In a third phase, estimates of economic and ecological performances were established, in order to assess the competitiveness of the newly developed WooCon recipes. The fourth evaluation phase of long-term properties (shrinkage and creep) of the 3 most promising WooCon recipes is currently ongoing. The study results show that adding an aggregate skeleton to WCCs, i.e. converting them into WooCon, can notably improve workability properties, up to self-compaction. Compressive strength can be doubled and elastic modulus can be tripled. Strength development can be predicted by generally accepted expressions and can even reach very rapid early hardening. Elastic modulus can be correlated quite accurately to compressive strength. In all evaluated mechanical properties, a marked influence of the applied percentage of organic aggregates could be observed. Economic impacts of WooCon majorly reside in costs for organic aggregates and cement, and result in unit prices up to 2.5 times higher than regular lightweight concrete (LC); however, if contextualised for mechanical elements, WooCon can perform better than regular LC. Lime filler and cement are the major contributors to ecological impact (global warming potential, GWP) but the overall result shows 75-80% reductions in comparison to regular LC.




2018

Reducing semi-probabilistic methods to acceptable structural safety deficits in deterministic assessments of existing concrete structures ArODES Conference

Daia Zwicky

Proceedings of 6th International Symposium on Life-Cycle Civil Engineering (IALCCE), 28-31 October 2018, Ghent, Belgium

Lien vers la publication

Résumé:

Probabilistic assessment of existing structures can be a powerful tool for efficiently prioritizing the necessity of maintenance interventions within usually limited budgets available for this activity of ever increasing importance – spend the limited money where it is the most effective. However, structural engineers in practice usually have neither sufficient know-how nor enough time at hand to apply full- or semi-probabilistic procedures in their daily structural assessment work. They need an easily applicable deterministic evaluation tool to judge what level of structural safety deficit is still acceptable if recommending disproportionate (structural) interventions shall be avoided. Based on semi-probabilistic updating methods, further considering generally accepted reliability indexes and proportionality of maintenance interventions, a simplified proposal for acceptable structural safety deficits in deterministic assessments of existing concrete structural elements is derived and discussed. Varying material qualities, as possibly encountered in existing structures, and different types of potentially governing failure modes are considered, in order to link deterministic degrees of compliance (that is, inverse of “unity checks” as applied elsewhere) to reliability indexes which, in turn, are related to efficiency of maintenance interventions and the need for urgent safety measures. These reflections are applied, on the one hand, in combination with directives for new structures and, on the other, with prescriptions for the assessment of existing structures, considering information provided in Swiss codes.


Dimensioning the flexural strenghtening of concrete slabs with textile reinforced mortar : literature data evaluation ArODES Conference

Daia Zwicky, Alex-Manuel Muresan

Proceedings of IABSE Conference 2018 "Engineering the past, to meet the needs of the future", Copenhagen, Denmark, 25-27 June 2018

Lien vers la publication

Résumé:

When strengthening reinforced concrete slabs with textile reinforced mortars (TRM), the “correct” consideration of the global bond behaviour between textile and cementitious matrix is identified as the main challenge in determining the most appropriate global analytical model. The first model evaluated here is based on classical assumptions for structural concrete design. The second model, as another extreme assumption, is completely neglecting textile bond in the cracked zone, thus assuming it as unbonded, end-anchored, external reinforcement. The third model is based on the simplifying assumption of the textile reinforcement being only significantly activated when the internal steel reinforcement is yielding. Analytical results from these approaches are compared to a database containing more than 130 test results reported in literature, and are statistically evaluated.




2017

Conférences antérieures Conference

Daia Zwicky

Multiples, 05.10.2017, Multiples

Lien vers la publication

Résumé:

A trouver sur ResearchGate !


Réalisations

Contact
HES-SO Rectorat
Route de Moutier 14
2800 - Delémont
T +41 58 900 00 00 - F +41 58 900 00 01

Carte

swissuniversities.ch www.eua.be
Mentions légales

HES-SO Rectorat