Highlight your achievements on People@HES-SO More info
PEOPLE@HES-SO – Directory and Skills inventory
PEOPLE@HES-SO – Directory and Skills inventory

PEOPLE@HES-SO
Directory and Skills inventory

Help
language
  • fr
  • en
  • de
  • fr
  • en
  • de
  • SWITCH edu-ID
  • Administration
ID
« Back
Olivier Jeremy

Olivier Jeremy

Professeur HES assistant

Main skills

robotique

interfaces humain-machine

haptique

Réglage automatique

Conception mécanique

Exosquelette

Machine spéciale

  • Contact

  • Teaching

  • Research

  • Publications

  • Conferences

Main contract

Professeur HES assistant

Desktop: BS14A

Haute école du paysage, d'ingénierie et d'architecture de Genève
Rue de la Prairie 4, 1202 Genève, CH
hepia
Faculty
Technique et IT
Main Degree Programme
Génie mécanique
BSc HES-SO en Génie mécanique - Haute école du paysage, d'ingénierie et d'architecture de Genève
  • Réglage automatique
  • Dynamique des systèmes mécaniques
BSc HES-SO en Microtechniques - Haute école du paysage, d'ingénierie et d'architecture de Genève
  • Systèmes asservis
MSc HES-SO en Engineering - HES-SO Master
  • Projet Interdisciplinaire Dispositifs médicaux : du besoin médical au marquage CE

Ongoing

Hand3ddl - Développement d’une plateforme de réduction de mouvements pour microchirurgie de la main

Role: Co-applicant

Financement: HES-SO

Description du projet :

En Suisse, en 2020, on recensait 76’504 cas d’accidents professionnels touchant les poignets, les mains ou les doigts, dont 40’200 plaies ouvertes (source : SUVA – Statistique des accidents LAA 2020). En France, chaque année, 1’400’000 accidents sont liés aux mains avec, dans de nombreux cas, des séquelles irréversibles. Cela représente un accident toutes les 22 secondes ! Il s’agit donc d’une véritable problématique de société, d’autant que ces chiffres progressent chaque année (sources : FESUM, Ameli – L’assurance maladie). Pour traiter les accidents impliquant des plaies ouvertes, il est fréquemment requis de réparer les petits vaisseaux ou les nerfs des doigts, de la main ou du poignet. Cela requiert une intervention de microchirurgie d’urgence. Cet exercice délicat ne peut être pratiqué que par un chirurgien rompu aux différentes techniques microchirurgicales. Du fait que les éléments à réparer sont extrêmement fins (p.ex. le diamètre des artères digitales est de l’ordre du millimètre), l’intervention nécessite une grande habileté. Lors de l’opération, un microscope est inévitablement utilisé mais, malgré cette aide à la visualisation de la zone à opérer, il n’existe actuellement aucune autre assistance pour faciliter le geste à proprement dit. Le chirurgien ne peut donc compter que sur son expérience et son adresse.

 

Pour répondre à cette urgence manifeste (nombre important de cas entrainant souvent des séquelles et manque évident d’aide à la microchirurgie de la main), il s’agit de proposer une solution permettant de réduire :

  1. le risque dû à un geste mal maitrisé lors des interventions
  2. le temps d’intervention pour le chirurgien dans un contexte hospitalier tendu

Nous proposons donc de réaliser une toute première plateforme de microchirurgie dédiée à la main sous forme d’un réducteur de mouvement mécanique. La plateforme aura les caractéristiques suivantes :

  • Reproduction (à très courte distance) du mouvement de la main du chirurgien
  • Réduction de l’échelle des mouvements (un premier facteur de réduction de 20 est envisagé – il sera confirmé par les chirurgiens)
  • Reproductibilité de positionnement adaptée à la tâche
  • Rigidité adaptée à la tâche et encombrement adapté au travail en microchirurgie
  • Possibilité de verrouiller le système en position pour permettre au chirurgien de maintenir une position précise (notamment lors de la suture)

Les délivrables du projet sont :

  • Un démonstrateur de type proof of concept (POC) de télémanipulateur-réducteur (pour un côté) qui pourra : réduire les mouvements, être verrouillé en position à la demande et assurer les positionnements dans les précisions annoncées
  • Des mesures de validation des performances requises du système
  • Un ensemble de recommandations pour la conception d’une évolution du système

Research team within HES-SO: Olivier Jeremy , Hugon Sylvain

Durée du projet: 01.05.2024 - 31.10.2025

Montant global du projet: 220'000 CHF

Statut: Ongoing

Completed

Projet Innosuisse - A novel instrument for the diagnosis and therapy evaluation of foot instability related pathologies (Innolink: 102.527 IP-LS)

Role: Main Applicant

Financement: Innosuisse

Description du projet :

Un outil d’aide au diagnostic pour l’orthopédie du pied

L'hallux valgus, également appelé «oignon», est une déformation fréquente de l'avant-pied qui touche un adulte sur quatre et un tiers des personnes âgées, avec une prévalence féminine de 80%. Cette pathologie déforme l'alignement et déstabilise l'équilibre mécanique du pied, ce qui produit des douleurs sous l’avant-pied, perturbe la marche et augmente le risque de chutes. Aujourd'hui encore, un tiers des patients est insatisfait du traitement chirurgical censé corriger la déformation et permettre un retour aux activités de la vie courante.

Ceci est principalement lié au taux de complications qui résulte de l’intervention. A court terme, il s'agit essentiellement d'un besoin de repratiquer un geste chirurgical et, à long terme, de douleurs chroniques.

Lorsqu’un patient souffre de ces symptômes, il consulte d’abord un chirurgien orthopédiste qui réalise, entre autres, un examen clinique pour évaluer l’équilibre biomécanique de l’avant-pied. Cette palpation manuelle permet de détecter une instabilité provenant des articulations du médio-pied et, ainsi, oriente le chirurgien vers le choix de la technique opératoire la plus adaptée (lorsqu’une chirurgie est nécessaire).

Cependant, les résultats obtenus dépendent largement de la façon dont l'examen est réalisé et varient selon le jugement subjectif de chaque chirurgien.

Pour cela, notre équipe a développé un outil d’évaluation appelé LaxiPed qui mesure de manière objective l'instabilité de l'avant-pied dans une position simulant une charge sous le pied. Suivant la même approche biomécanique que l'examen manuel, cet instrument évalue la déformation des articulations tarsométatarsiennes en fonction d’une force appliquée en proposant une série d’indicateurs.

Pour diminuer l’impact du facteur humain, la mesure est complètement automatisée et permet de récolter des données quantitatives de manière fiable et rapide, ce qui la rend parfaitement adaptée à une utilisation en salle de consultation.

Ce projet a reçu un financement Innosuisse (sans partenaire d’implémentation) de 2022 à 2024. Il a été mené en collaboration avec le centre ASSAL à Genève et le laboratoire du Professeur Sylvain Hugon de la HEIG-VD. De plus, une startup est en cours de création par M. Quentin Praz et M. Spyridon Schoinas afin de continuer le développement et la commercialisation de cet outil.

Research team within HES-SO: Olivier Jeremy , Hugon Sylvain , Glück Florent , Voëffray Julien , Mangano Giovanni , Da Silva Marques Gabriel

Partenaires académiques: Passeraub Philippe, BYU, anciennement HEPIA; Praz Quentin, Anciennement HEPIA; Schoinas Spyridon, Anciennement HEPIA; Beuchat René, Anciennement HEPIA

Durée du projet: 01.09.2022 - 31.03.2024

Montant global du projet: 571'429 CHF

Url of the project site: https://www.hesge.ch/hepia/recherche-developpement/projets-recherche/laxiped

Statut: Completed

2023

Human motor augmentation with an extra robotic arm without functional interference
Scientific paper

Giulia Dominijanni, Daniel Leal Pinheiro, Leonardo Pollina, Bastien Orset, Martina Gini, Eugenio Anselmino, Camilla Pierella, Olivier Jeremy, Solaiman Shokur, Silvestro Micera

Science Robotics, 2023 , vol.  8, no  85

Link to the publication

Summary:

Abstract

Extra robotic arms (XRAs) are gaining interest in neuroscience and robotics, offering potential tools for daily activities. However, this compelling opportunity poses new challenges for sensorimotor control strategies and human-machine interfaces (HMIs). A key unsolved challenge is allowing users to proficiently control XRAs without hindering their existing functions. To address this, we propose a pipeline to identify suitable HMIs given a defined task to accomplish with the XRA. Following such a scheme, we assessed a multimodal motor HMI based on gaze detection and diaphragmatic respiration in a purposely designed modular neurorobotic platform integrating virtual reality and a bilateral upper limb exoskeleton. Our results show that the proposed HMI does not interfere with speaking or visual exploration and that it can be used to control an extra virtual arm independently from the biological ones or in coordination with them. Participants showed significant improvements in performance with daily training and retention of learning, with no further improvements when artificial haptic feedback was provided. As a final proof of concept, naïve and experienced participants used a simplified version of the HMI to control a wearable XRA. Our analysis indicates how the presented HMI can be effectively used to control XRAs. The observation that experienced users achieved a success rate 22.2% higher than that of naïve users, combined with the result that naïve users showed average success rates of 74% when they first engaged with the system, endorses the viability of both the virtual reality–based testing and training and the proposed pipeline.

2019

Exoskeletons as Mechatronic Design Example
Book chapter

Hannes Bleuler, Tristan Vouga, Amalric Ortlieb, Romain Baud, Jemina Fasola, Olivier Jeremy, Solaiman Shokur, Mohamed Bouri

Dans Carbone G., Ceccarelli M., Pisla D.,  New Trends in Medical and Service Robotics. Mechanisms and Machine Science. 2019,  Switzerland : Springer

Link to the publication

2017

EXiO - A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques
Scientific paper

Tristan Vouga, Katie Zhuang, Olivier Jeremy, Mikhail A Lebedev, Miguel Nicolelis, Mohamed Bouri, Hannes Bleuler

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017 , vol.  25, no  2, pp.  131-141

Summary:

Recent advances in the field of brain-machine interfaces (BMIs) have demonstrated enormous potential to shape the future of rehabilitation and prosthetic devices. Here, a lower-limb exoskeleton controlled by the intracortical activity of an awake, behaving rhesus macaque is presented as a proof-of-concept for a locomotor BMI. A detailed description of the mechanical device, including its innovative features and first experimental results, is provided. During operation, BMI-decoded position and velocity are directly mapped onto the bipedal exoskeleton’s motions, which then move the monkey’s legs as the monkey remains physically passive. To meet the unique requirements of such an application, the exoskeleton’s features include: high output torque with backdrivable actuation, size adjustability and safe user-robot interface. In addition, a novel rope transmission is introduced and implemented. To test the performance of the exoskeleton, a mechanical assessment was conducted, which yielded quantifiable results for transparency, efficiency, stiffness and tracking performance. Usage under both brain control and automated actuation demonstrate the device’s capability to fulfil the demanding needs of this application. These results lay the groundwork for further advancement in BMI-controlled devices for primates including humans.

2016

Development of Walk Assistive Orthoses for Elderly
Doctoral thesis

Olivier Jeremy

2016,  Lausanne Switzerland : EPFL

Hannes Bleuler

Summary:

The proportion of elderly people is rapidly growing and the resources to help them will soon be insufficient. An important difficulty faced by the seniors is locomotion. Among the conditions that may be responsible for gait impairment, the reduced muscular force is one of the most frequent in elderly. This thesis focuses on the design and the evaluation of new solutions for assisting people with reduced vigor. Robotic orthoses are then used to support critical movements required for walking. Over the last two decades, the use of actuated orthotic devices for helping people suffering from gait disorders has been made possible. Recently, autonomous devices have even enabled spinal cord injured patients to walk again by mobilizing their paralyzed limbs. Addressing a completely different population, similar devices have been developed to augment healthy users' capabilities, for instance when heavy loads need to be carried. In this case, the wearer is in charge of the movements and the device simply follows the imposed trajectories. Extra load can then be carried by the exoskeleton without being felt by the user. The walk assistive devices developed as part of this thesis being intended for the elderly, they are at the intersection between these two classes of robotic orthosis. Indeed, most of the seniors who have difficulties to walk are able to move and therefore the mobilization devices are not adapted to them. Even though they need assistance, they surely do not want to have their movements imposed by a robotic device. The performance augmentation exoskeletons cannot help them either, as they simply follow the movements and only reject the external perturbations. A device that follows their movements and that adds the right amount of force when needed is therefore required. In order to achieve the demanding characteristics associated with assistive devices, new actuation solutions based on conventional electric motors are proposed. The combination of specifications in terms of overall weight, required assistance torque, dynamics capabilities or transparency when no support is provided is undeniably challenging. Various mechanisms are therefore presented to address these requirements. Two prototypes based on the proposed solutions are presented. The first one is based on a ball-screw transmission combined with linkages which provides a transmission ratio that is adapted to multiple walk related activities. The second one uses a transmission with clutches and an inversion mechanism which notably limits the losses due to the inertia of the actuation and greatly improves the natural transparency. In order to limit the obstructiveness of the assistive device, we propose to use partial devices that support specific movements. Two studies about the influence of such partial devices on gait are therefore presented. The first one focuses on identifying the potential sources of gait disturbance that orthotic device can induce. The second examines the effects of an assistive controller implemented on one of the developed prototypes. These studies demonstrate that even though the passive influence of a hip assistive orthosis on kinematic patterns is limited, the metabolic cost is increased. A moderate assistance cannot compensate for this undesirable effect but a link between the hip assistance and the ankle trajectory could be established. This is of major importance as the elderly tend to compensate for their weak ankle muscles with their hips.

2015

Control Strategies for Active Lower Extremity Prosthetics and Orthotics: A Review
Scientific paper

Michael R Tucker, Olivier Jeremy, Anna Pagel, Hannes Bleuler, Mohamed Bouri, Olivier Lambercy, Jose de R Millan, Robert Riener, Heike Vallery, Roger Gassert

Journal of NeuroEngineeringand Rehabilitation, 2015

Summary:

Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os – not as independent devices, but as actors within an ecosystem – is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user’s neuromusculoskeletal system and are practical for use in locomotive ADL.

2014

Mechanisms for actuated assistive hip orthoses
Scientific paper

Olivier Jeremy, Amalric Ortlieb, Mohamed Bouri, Hannes Bleuler

Robotics and Autonomous Systems, 2014

Summary:

Mobility is often a central problem for people having muscle weaknesses. The need for new devices to assist walking and walk related activities is therefore growing. Lower limb actuated orthoses have already proven their positive impact with paraplegic patients and are potentially promising for assisting people with weak muscles. However, the transfer from the existing systems of mobilization towards assistance implies several technical challenges as the seamless integration and the reduction of power consumption. In this paper two assistive orthoses which use different types of actuation mechanisms are presented and discussed. The first one is based on a ball screw and an excavator-like mechanism while the second one is based on a double differential actuation. Their technical capabilities are compared and contextualized for diverse activities. Objective characteristics such as the range of motion of the devices, the transparency, the maximal torque that they can provide or the RMS torque during cyclic trajectories are compared to point out which device is better adapted for specific situations.

2016

The Delta - PantoScope: A novel kinematics for single port MIS positioner
Conference

Olivier Jeremy, Jerry Bielmann, Jiantao Zhang, Mohame Bouri, Hannes Bleuler

12th Asian Conference on Computer Aided Surgery (ACCAS), 14.12.2016 - 16.10.2016, Daejeon

Foot-controlled endoscope positioner for laparoscopy: Development of the master and slave interfaces
Conference

Elahe Abdi, Mohamed Bouri, Olivier Jeremy, Hannes Bleuler

4th International Conference on Robotics and Mechatronics (ICROM), Tehran, 2016, 26.10.2016 - 28.10.2016, Teheran

Link to the conference

HiBSO hip exoskeleton: Toward a wearable and autonomous design
Conference

Romain Baud, Amalric Ortlieb, Olivier Jeremy, Mohamed Bouri, Hannes Bleuler

Medical and Service Robotics (MESROB, 04.07.2016 - 06.07.2016, Graz

Investigations on the Influence of an Assistive Hip Orthosis on Gai
Conference

Olivier Jeremy, Amalric Ortlieb, Mohamed Bouri, Hannes Bleuler

International Conference on Robotics in Alpe - Adria - Danube Region, 01.03.2016 - 02.07.2016, Belgrade

2015

Impact of Ankle Locking on Gait
Conference

Olivier Jeremy, Amalric Ortlieb, Paul Bertusi, Tristan Vouga, Mohamed Bouri, Hannes Bleuler

International Conference On Rehabilitation Robotics, 11.10.2015 - 14.08.2015, Singapore

From gait measurements to design of assistive orthoses for people with neuromuscular diseases
Conference

Amalric Ortlieb, Olivier Jeremy, Mohamed Bouri, Hannes Bleuler, Thierry Kuntzer

International Conference On Rehabilitation Robotics, 11.08.2015 - 14.08.2015, Singapore

A Double - Differential Actuation for an Assistive Hip Orthosi
Conference

Olivier Jeremy, Mohamed Bouri, Hannes Bleuler

Dynamic Walking, 16.02.2015 - 16.02.2015, Zurich

2014

The Walk Again Project ( WAP): Sensory feedback for brain controlled exoskeleton
Conference

Solaiman Shokur, Simone Gallo, Olivier Jeremy, N Peretti, Angelo, A Lin, K Fast, R Moioli, F Brasil, E Morya, Gordon Cheng, Hannes Bleuler, Miguel Nicolelis

Society for Neuroscience, 15.11.2014 - 19.11.2014, Washington DC

Cortical control of a lower - limb exoskeleton in rhesus monkeys
Conference

Katie Zhuang, Olivier Jeremy, Tristan Vouga, Mohamed Bouri, Hannes Bleuler, M Lebedev, Miguel Nicolelis

Society for Neuroscience, 15.11.2014 - 19.11.2014, Washington DC

A robotic platform for lower limb optical motion tracking in open space
Conference

Amalric Ortlieb, Olivier Jeremy, Mohamed Bouri, Hannes Bleuler

Medical and Service Robotics (MESROB, 16.09.2014 - 16.07.2014, Lausanne

Evaluation of an active optical system for lower limb motion tracking
Conference

Amalric Ortlieb, Olivier Jeremy, Mohamed Bouri, Hannes Bleuler

3D - AHM, 14.07.2014 - 17.07.2014, Lausanne

The LegoPress: A Rehabilitation, Performance Assessment and Training Device
Conference

Olivier Jeremy, Maxime Jeanneret, Mohamed Bouri, Hannes Bleuler

Eurohaptics, 24.06.2014 - 27.06.2014, Versailles

2013

A Double - Differential Actuation for an Assistive Hip Orthosi
Conference

Olivier Jeremy, Mohamed Bouri, Hannes Bleuler

Neurotechnix, 18.09.2013 - 20.09.2013, Vilamoura

Development of an Assistive Motorized Hip Orthosis
Conference

Olivier Jeremy, Amalric Ortlieb, Mohamed Bouri, Hannes Bleuler, Reymond Clavel

International Conference On Rehabilitation Robotics, 24.06.2013 - 26.06.2013, Seattle

Achievements

Media and communication
Contact us
Follow the HES-SO
linkedin instagram facebook twitter youtube rss
univ-unita.eu www.eua.be swissuniversities.ch
Legal Notice
© 2021 - HES-SO.

HES-SO Rectorat