Valorisez vos réalisations phares sur People@HES-SO Plus d'infos
PEOPLE@HES-SO – Annuaire et Répertoire des compétences
PEOPLE@HES-SO – Annuaire et Répertoire des compétences

PEOPLE@HES-SO
Annuaire et Répertoire des compétences

Aide
language
  • fr
  • en
  • de
  • fr
  • en
  • de
  • SWITCH edu-ID
  • Administration
ID
« Retour
Rey Joan Frédéric

Rey Joan Frédéric

Collaborateur scientifique HES

Compétences principales

Statistiques

Data Analysis

Climatologie

Changements climatiques

Extrêmes climatiques

Qualité de l'air intérieur

Radon

Réalisations phares

Publications
Shifting velocity of temperature extremes under climate change
Publications
Long-Term Impacts of Weather Conditions on Indoor Radon Concentration Measurements in Switzerland
Publications
Performance evaluation of radon active sensors and passive dosimeters at low and high radon concentrations
  • Contact

  • Enseignement

  • Recherche

  • Publications

  • Conférences

Contrat principal

Collaborateur scientifique HES

Haute école d'ingénierie et d'architecture de Fribourg
Boulevard de Pérolles 80, 1700 Fribourg, CH
HEIA-FR
Institut
Transform - Institut d'architecture : patrimoine, construction et usagers

Researcher with a high interest in many environmental problematics. Skilled in Climate Change, Climate Change Adaptation, Urban Climate, Urban Thermal Confort, Indoor air quality, Indoor radon concentration, and Data Analysis. Strong research professional background with a Ph.D. degree in Environmental Engineering obtained at EPFL / EDCE in 2024.

Currently working for CroqAIR (centre romand de la qualité de l'air intérieur et du radon) in TRANSFORM institute within the HEIA-FR, my researches allow me to write a thesis within the EDCE doctoral school in EPFL. 

BA HES-SO en Architecture - Haute école d'ingénierie et d'architecture de Fribourg
  • Durabilité
  • Introduction à la durabilité

En cours

SCOL'AIR-FR - une bonne qualité de l’air dans les écoles primaires du canton de Fribourg : enjeux et conditions

Rôle: Collaborateur/trice

Financement: SLL, OFSP, Canton de Fribourg

Description du projet :

Situation dans les salles de classe

Les jeunes enfants et ceux qui fréquentent l’école primaire sont particulièrement sensibles à la qualité de l’air intérieur (QAI) en raison du stade de développement de leurs systèmes respiratoires et immunitaires. Plusieurs études relèvent la prévalence d’asthme et d’allergies respiratoires au sein de cette population (voir état de l’art).

Au-delà du CO2, d‘autres polluants directement associés aux activités scolaires et aux fournitures employées dans les salles de classe, aux matériaux de construction et d’ameublement, aux pratiques et à la fréquence des nettoyages mais aussi aux conditions du terrain et à l’environnement extérieur dans lequel se situe le bâtiment peuvent également avoir des effets plus ou moins délétères sur la santé des enfants. Il est nécessaire de connaître ces polluants et leurs sources pour les réduire afin d’améliorer la qualité de l’air.

Etude de 2013-2015

en collaboration avec certaines communes des cantons de Berne, de Vaud et des Grisons, l’Office fédéral de la santé publique a conduit une étude durant deux hivers de 2013 à 2015 dans le but d’évaluer la qualité de l’aération dans les écoles de Suisse. La qualité de l’air intérieur y était insuffisante dans les deux tiers des salles de classe avec fenêtres à ouverture manuelle.

Campagne de mesures du canton de Fribourg

Le Service de l’énergie du canton de Fribourg lance une vaste campagne de mesure de la concentration en CO2 dans toutes les salles de classes du canton avec élaboration d’une documentation pédagogique à l’adresse des enseignants et des enfants. croqAIR s’est vu attribuer ce mandat. Environ 1500 salles réparties dans 96 cercles scolaires sont concernées. SCOL’AIR-FR profite de cette opportunité et élargit les objectifs initiaux – mais dans un nombre plus restreint de bâtiments - avec des mesures de polluants supplémentaires et un focus approfondi sur les solutions techniques et d’usage envisageables pour garantir un air de bonne qualité.

Projet pilote

SCOL’AIR-FR est le premier projet soutenu par le comité de l’Observatoire romand et tessinois de la qualité de l’air intérieur (ORTQAI). A ce titre, il fait office de projet pilote prospectif qui répond aux objectifs de cette structure naissante qui sont d’une part de fédérer les ressources allouées à la problématique de la qualité de l’air intérieur en Suisse romande mais aussi de fournir l’opportunité aux chercheurs de mettre en commun et de partager leurs compétences. Le canton de Fribourg fait preuve d’exemplarité en initiant ce projet dans le contexte du Smart Living Lab.

Objectifs du projet

Au-delà de la « simple » mesure des différentes familles de polluants dans l’air des écoles, SCOL’AIR-FR a pour principal objectif d’identifier et de comprendre les enjeux multifactoriels de cette problématique (humains, économiques, techniques, en lien avec la durabilité des bâtiments) dans le but de déployer de la manière la plus efficace possible des solutions techniques ou d’usage efficaces et adaptées à l’environnement et à la nature des problèmes rencontrés, dans les bâtiments présentant une « mauvaise » qualité de l’air intérieur.

SCOL’AIR profite de cette opportunité et élargit les objectifs initiaux – mais dans un nombre plus restreint de bâtiments - avec des mesures de polluants supplémentaires et un focus approfondi sur les solutions techniques et d’usage envisageables pour garantir un air de bonne qualité.

Equipe de recherche au sein de la HES-SO: Goyette Pernot Joëlle , Cesari Matias , Rey Joan Frédéric , Hager Jörin Corinne

Partenaires académiques: Suarez Guillaume, Unisanté; Muller Yan, SABRA Etat de Genève; Perret Vincent, TOXpro SA; Roulet Claude-Alain, Prof émérite EPFL; Licina Dusan, EPFL / HOBEL; Pampuri Luca, SUPSI; Herrera Horacio

Partenaires professionnels: Brunner Christophe, Association Qualiventil

Durée du projet: 01.05.2021 - 31.12.2023

Montant global du projet: 171'705 CHF

Url du site du projet: https://www.smartlivinglab.ch/fr/scolair-research-story/

Statut: En cours

Horizon H2020 RadoNorm - Towards effective radiation protection based on improved scientific evidence and social considerations - focus on radon and NORM

Rôle: Collaborateur/trice

Financement: EU

Description du projet :

RadoNorm is designed to initiate and perform research and technical development in support of European Union Member
States, Associated Countries and the European Commission in their efforts to implement the European radiation protection
Basic Safety Standards. The proposed multidisciplinary and inclusive research project will target all relevant steps of the
radiation risk management cycle for radon and NORM exposure situations. RadoNorm aims to reduce scientific, technical
and societal uncertainties by (i) initiating and performing research and technical developments, (ii) integrating education and
training in all research and development activities, (iii) and disseminating the project achievements through targeted actions
to the public, stakeholders and regulators.
This will strengthen the scientific and technical basis for all key steps of the radiation risk management cycle for radon and
NORM. The inclusive character of RadoNorm is given at different levels, by (i) targeting research and development on all
steps of the management cycle, (ii) combining biomedical, and ecological research with mitigation development and social
science research, (iii) integration of researchers from national radiation protection institutions, research centres, universities,
and SME, (iv) incorporation of E&T activities in all undertakings, and (v) linking dissemination efforts directly to knowledge
achievements and new recommendations.
Steps addressed are the (a)characterization of radon and NORM exposures, (b)improving dosimetry, (c)assessing effects
and risks for humans and the environment, (d)refining mitigation technologies, (e)raising the understanding for societal
aspects, and (f)disseminating achievements. Further, an ambitious pan European E&T programme, will contribute to
competence building and sustainability of the project findings.
The project includes 56 partners from 22 EU member states and associated countries and collaboration with groups in the
US and Canada.

Equipe de recherche au sein de la HES-SO: Goyette Pernot Joëlle , Rey Joan Frédéric

Durée du projet: 01.09.2020 - 31.08.2025

Url du site du projet: https://cordis.europa.eu/project/id/900009/fr

Statut: En cours

Terminés

MACADAM - MitigAtion of ClimAte change by Design, Adaptation and Monitoring

Rôle: Collaborateur/trice

Financement: HES-SO

Description du projet :

La finalité du projet consiste à contribuer à l'enrichissement des connaissances objectives sur les déterminants du microclimat urbain, afin que les collectivités, urbanistes, aménagistes, architectes du paysage puissent mettre en oeuvre des mesures qui conditionnent positivement le bien-être des usagers de la ville, à partir de connaissances solides et de références appropriées. La contribution de la nature est un élément fort de ces stratégies et ne sera efficace que si des conditions propices à son épanouissement sont rencontrées.

L'environnement urbain influence le bien-être physique, social et mental des habitants. En Suisse comme ailleurs, les principaux centres urbains sont soumis à une forte pression de densification aussi bien pour des raisons économiques (attraits des centres, concentration des activités) qu'en lien avec la loi sur l'aménagement du territoire (LAT).

Les perspectives climatiques montrent que les évolutions seront exacerbées dans l'environnement urbain. Les arbres urbains sur lesquels les politiques misent pour tempérer le climat sont déjà fortement impactés. Les fortes contraintes à venir doivent être comprises et anticipées dès maintenant, au vu de la durée de vie des aménagements et plantations.

Les mesures obtenues sur le terrain avec le microclimatmètre développé par hepia dans plusieurs grandes villes suisses ont permis de mettre en évidence des situations que l'état des connaissance ou de modélisation ne sont pas en mesure d'expliquer. Par exemple:

a) Pourquoi l'arbre ne contribue-t-il pas toujours au rafraîchissement de la ville?

b) Pourquoi les plans d'eau n'apportent-ils que rarement la fraîcheur escomptée?

c) Comment s'assurer du bon usage des surfaces urbaines comme composante de la régulation climatique?

d) Quelle contribution climatique attendre de la nature en ville?

Afin de cibler au mieux les politiques climatiques et investissements consécutifs, ainsi que pour obtenir les services écosystémiques escomptés, il est indispensable de bien comprendre les mécanismes qui conditionnent le microclimat sous nos latitudes dans le contexte d'urbanisation en Suisse, et en particulier de mettre en évidence les conditions qui limiteront le développement des arbres en ville.

Pour répondre à cette demande, le projet MACADAM prévoit de:

a) Réaliser des mesures microclimatiques détaillées.

b) Documenter et analyser les contributions de chaque élément qui définit les espaces identifiés, à savoir: le végétal, l'eau, la matérialité et leur organisation spatiale.

c) Etablir des indicateurs utiles pour apprécier le contexte microclimatique des personnes et du végétal.

d) Rédiger un guide-référentiel qui illustre les études de cas et apporte des explications concises et factuelles sur le fonctionnement des éléments dans leur contexte urbain.

Equipe de recherche au sein de la HES-SO: Camponovo Reto , Goyette Pernot Joëlle , Boivin Pascal , Rey Joan Frédéric

Partenaires académiques: Galinelli Peter, HEPIA; Guillot Victor, HEPIA; Fournier Marie, HEPIA; Crémel Laurence, HEPIA; Rey Joan Frédéric, HEIA-FR

Durée du projet: 01.04.2018 - 31.07.2020

Montant global du projet: 175'000 CHF

Statut: Terminé

Interreg France-Suisse JURAD-BAT - Améliorer la gestion du risque radon dans les bâtiments de l'Arc jurassien: une plateforme transfrontalière au service des usagers et professionnels concernés.

Rôle: Collaborateur/trice

Description du projet :

Ce projet a pour objectif de développer une plateforme transfrontalière pour favoriser la mise en commun, le partage d’expériences et de compétences et la formation des professionnels en matière de gestion du risque radon. Ce traitement du risque s’intégrera plus globalement dans une démarche de santé publique au sein des bâtiments de l’arc jurassien en considérant la qualité générale de l’air intérieur et la problématique de l’efficacité énergétique.

https://www.smartlivinglab.ch/fr/projects/jurad-bat/

 

Equipe de recherche au sein de la HES-SO: Goyette Pernot Joëlle , Rey Joan Frédéric , Perrelet Théo , De Potter Longchamp Céline , Cesari Matias

Partenaires académiques: Gschwind Régine, Université de Franche-Comté

Partenaires professionnels: Gandolla Mauro, ECONS SA; Renaud Pierre, Planair SA; Bujard Martial, EHE SA

Durée du projet: - 10.04.2020

Statut: Terminé

2025

Performance evaluation of radon measurement techniques in single-family homes
Article scientifique

Rey Joan Frédéric, Dusan Licina, Goyette Pernot Joëlle

Indoor Environments, 2025

Lien vers la publication

Résumé:

Radon, a naturally occurring radioactive gas, poses a significant health risk as prolonged exposure indoors can lead to lung cancer. Current radon measurement techniques vary widely in methodology, device types, and exposure duration, posing challenges to accurately evaluate and benchmark radon concentrations. To comprehensively assess the performance of various radon measurement techniques, we conducted measurements in 20 single-family homes across diverse geographical regions of Western Switzerland. We deployed multiple types of passive dosimeters and three grades of real-time sensors for periods extending up to one year. Our results reveal that long-term passive measurements were only marginally influenced by measurement duration, demonstrating the reliability of passive measurements shorter than one year. Cross-comparisons of real-time sensors revealed performance discrepancies, with medium- and consumer-grade sensors exhibiting errors of 10?% and 18?%, respectively, when compared to reference research-grade devices. Furthermore, comparison of consumer- and medium-grade sensors to 3-, 6- and 12-month passive measurements underlined their capability to monitor radon levels accurately, with errors typically below 20?%. These results were consistent with previous laboratory-based performance testing, highlighting similar real-life performance of real-time radon sensors. Our findings suggest that short-term passive measurements and low-cost real-time measurements could reliably replace traditional radon assessment methods. This paper provides new insights into the reliability and performance of radon measurement techniques over various time periods and real-life conditions.

2024

Evaluation of the impact of ventilation system daily operation on air quality, comfort and well-being in primary schools
Article scientifique

Rey Joan Frédéric, Cesari Matias, Christophe Brunner, Yan Muller, Claude-Alain Roulet, Goyette Pernot Joëlle

Journal of Physics: Conference Series, 2024 , vol.  2600, no  102005

Lien vers la publication

Résumé:

The Scol’air-FR project is issued from the need to establish an inventory of indoor air quality conditions in primary schools of the canton of Fribourg, Switzerland. In Fribourg, the official trend is to promote mechanical ventilation systems in schools to ensure a good air quality. A properly designed, built, commissioned, and operated mechanical ventilation system should be able to deliver the anticipated flow rate, regardless of who uses it - the only person involved being the person responsible for ventilation system operation. In some cases, however, the expected objectives are not achieved. This similar observation applies to natural ventilation. A good ventilation concept, properly implemented and operated, should also achieve the same
objective if the outdoor air quality is good. The aim of this article is to identify differences, in terms of indoor air quality and well-being, between naturally and mechanically ventilated schools. Moreover, we expect to identify if trends are attributable to the operation of ventilation systems or to occupant behaviours. We observed lower carbonic gas levels in building equipped with mechanical ventilation systems. This finding can be extended to VOCs and relative humidity. We also identified different and recurrent issues among the different mechanical ventilation systems. Our results highlight issues measured in buildings equipped by mechanical ventilation systems are mostly related to the balance of the system, while in natural ventilation systems, IAQ related issues are mainly due to the present context and its influences on occupants’behaviour.

Autodigit-RAD: Towards an automation of the radon’s concentration dataflow in a new and innovative building
Article scientifique

Rey Joan Frédéric, Cesari Matias, Schoenenweid Marion, Montet Frédéric, Mauro Gandolla, Leevan Bonvin, Bourquin Vincent, Claude-Alain Jaccot, Justine Roman, Sebastian Duque Mahecha, Sergi Aguacil Moreno, Hennebert Jean, Goyette Pernot Joëlle

Journal of Physics: Conference Series, 2024 , vol.  2600, no  102008

Lien vers la publication

Résumé:

Radon is a noble, natural, and radioactive gas coming mainly from the ground which might accumulate indoors and lead each year to 200-300 deaths from lung cancer in Switzerland. A brand new and innovative living lab will be built as of 2023 in Fribourg (Switzerland) which will allow to tackle the built environment and the relationship with its occupants. Among a large panel of environmental parameters, radon gas will be continuously monitored under and around the building as well as in the building envelope. This paper aims to present the overall process of the radon dataflow: 1) design of the sensor probes, 2) implementation of the radon sensor probes in the ground and 3) go-live with the data sharing platform with the building users. Such an infrastructure will bring the opportunity to researchers to lead new and innovative radon-related research.

Performance evaluation of radon active sensors and passive dosimeters at low and high radon concentrations
Article scientifique

Rey Joan Frédéric, Nicolas Meisser, Dusan Licina, Goyette Pernot Joëlle

Building and Environment, 2024 , vol.  250, no  111154

Lien vers la publication

Résumé:

Radon is a naturally occurring radioactive gas that has the potential to accumulate in buildings and over time, causes lung cancer in humans. Present methods for radon measurements are disparate, which pose challenges to benchmark radon concentrations and to accurately assess the population's received dose. This paper presents a comprehensive performance evaluation of radon dosimeters and three grades of active radon sensors: consumer-, medium- and research-grade. The measurements were performed at relatively low (300 Bq/m3) and high (2′000–3′000 Bq/m3) radon levels. Tests were conducted in an atomic shelter, with stable temperature and humidity conditions. The active sensors differed in absolute accuracy and dynamic performance (time-dependent correlations) according to their grade. Research-grade sensors performed marginally better than medium-grade sensors, and significantly better than consumer-grade sensors. Relative to the reference, the error (percentage difference between the reference and the sensors) was below 5 % for research- and medium-grade sensors, and nearly 10 % for consumer-grade sensors at high radon levels. Performance of sensors diminished at low radon levels, except for research-grade sensors. Passive dosimeters generally performed better at high radon levels than at low ones. Their longer exposure time was associated with increased measurement reliability. These results highlight the need for understanding the purpose of measurements in order to select an adequate radon detector, and ultimately, reduce measurement and interpretation errors. This study raises awareness among researchers, radon professionals and the general public regarding the performances of different active radon sensors and passive dosimeters. It also sheds light on their respective scope of application.

https://infoscience.epfl.ch/handle/20.500.14299/242383
Thèse de doctorat

Rey Joan Frédéric

2024,  Lausanne : EPFL

Lien vers la publication

Résumé:

Since the 80s, indoor radon, a radioactive noble gas, became a public health concern, with the WHO declaring it a carcinogen in 1987. Accurate radon measurement is crucial for estimating exposure and shaping policies to reduce lung cancer. Nowadays, the reliability of radon measurement is challenged by different trends: 1) the advent of IoT and environmental monitoring in buildings. 2) The increased awareness of indoor air quality, especially following the SARS-CoV-2 pandemic, increasing interest in monitoring indoor air quality and radon. 3) Renovating buildings to reduce energy use often worsens indoor air quality. This thesis addresses these key challenges in assessing indoor radon.
Following introduction and literature review, Chapter 3 provides new insights into the performance of passive dosimeters and real-time radon devices. Current methods for measuring radon are inconsistent, making it difficult to benchmark concentrations and accurately assess exposure. The study compared passive dosimeters and three price-based grades of real-time monitors at low (300 Bq/m3) and high (2'000-3'000 Bq/m3) concentrations in lab conditions. Consumer-grade sensors underperformed compared to research-grade models, while medium-grade sensors matched consumer-grade at low levels but performed like research-grade at high levels. Performance disparities were larger at low radon concentrations. Finally, passive dosimeters improved with longer exposure and higher levels. Results show real-time sensor performance correlates with price, emphasizing the need to choose devices based on measurement goals to reduce errors. Lab experiments also revealed no significant impact of common aerosol sources on real-time sensors, confirming their robustness against environmental conditions.
Chapter 4 evaluates the performance of real-time radon measurement devices in real-world conditions to ensure a smooth transfer of knowledge from the lab to practical use. The results show that real-time sensors performed similarly in real-life conditions as they did in the lab. Additionally, passive measurement protocols used in Switzerland were compared and indicated long-term passive measurements were only slightly affected by duration, affirming the reliability of 3- and 6-month measurements, even for periods shorter than one year.
Chapter 5 explores alternatives to direct radon measurement by comparing statistical methods (e.g. multiple linear regression, logistic regression, random forest regression/classification) to predict indoor radon levels based on environmental and buildings factors. After providing a list of method, through a PRISMA systematic literature review, results showed that predictive accuracy varies depending on the dataset, with random forest classification achieving up to 85% accuracy, although this remains insufficient. No method can predict indoor radon levels without error, highlighting the need for further research. Researchers must carefully choose prediction methods based on specific objectives and available data, as there is no universal approach for all cases.
This thesis provides insights into the three key aspects of radon measurement in buildings: 1) devices, 2) protocols and methods, and 3) predictions. It enhances accuracy and confidence in indoor radon levels by addressing uncertainties. This work is crucial for mitigating health risks and lays a solid foundation for future research and applications in environmental health and safety.

Systematic review of statistical methods for the identification of buildings and areas with high radon levels
Article scientifique

Rey Joan Frédéric, Sara Antignani, Sebastian Baumann, Christian Di Carlo, Niccolò Loret, Claire Gréau, Valéria Gruber, Goyette Pernot Joëlle, Francesco Bocchichio

Frontiers in Public Health, 2024

Lien vers la publication

Résumé:

Radon is a natural and radioactive noble gas, which may accumulate indoors and cause lung cancers after long term-exposure. Being a decay product of Uranium 238, it originates from the ground and is spatially variable. Many environmental (i.e., geology, tectonic, soils) and architectural factors (i.e., building age, floor) influence its presence indoors, which make it difficult to predict. However, different methods have been developed and applied to identify radon prone areas and buildings. This paper presents the results of a systematic literature review of suitable statistical methods willing to identify buildings and areas where high indoor radon concentrations might be found. The application of these methods is particularly useful to improve the knowledge of the factors most likely to be connected to high radon concentrations. These types of methods are not so commonly used, since generally statistical methods that study factors predictive of radon concentration are focused on the average concentration and aim to identify factors that influence the average radon level. In this paper, an attempt has been made to classify the methods found, to make their description clearer. Four main classes of methods have been identified: descriptive methods, regression methods, geostatistical methods, and machine learning methods. For each presented method, advantages and disadvantages are presented while some applications examples are given. The ultimate purpose of this overview is to provide researchers with a synthesis paper to optimize the selection of the method to identify radon prone areas and buildings.

Evaluating the impact of indoor aerosols on the performance of real-time radon sensors
Article scientifique

Rey Joan Frédéric, Nicolas Meisser, Dusan Licina, Goyette Pernot Joëlle

Frontiers in Built Environment, 2024

Lien vers la publication

Résumé:

Radon, a naturally occurring radioactive gas, poses a significant health risk by accumulating in buildings and potentially leading to lung cancer. Depending on building construction and geographical location, radon levels can vary substantially both within individual buildings and between different buildings. While previous studies have primarily focused on the impact of temperature and relative humidity on radon devices, the influence of aerosols remains largely unexplored. This paper presents a comprehensive evaluation of the influence of indoor aerosol sources on the performance of real-time radon sensors, encompassing consumer, medium, and research-grade devices. Measurements were performed at relatively low (300 Bq/m3) and high (2′000–3′000 Bq/m3) radon levels in a controlled environment—a stable atomic shelter with constant temperature and humidity conditions. Six different aerosols sources were introduced to produce aerosols of different sizes and concentrations. The results suggest that the tested indoor aerosols did not significantly influence the performance of radon devices, irrespective of their grade or detection method. Consequently, sensor performance and the radon levels being investigated may exert a more significant influence on the obtained results than aerosol levels alone. This paper provides valuable insights into the influence of indoor environment on the performance of radon measuring devices, underscoring the importance of understanding their utility and application scope for researchers, professionals, and the general public alike.

2022

Long-term impacts of weather conditions on indoor radon concentration measurements in Switzerland
Article scientifique ArODES

Joan Frédéric Rey, Stéphane Goyette, Mauro Gandolla, Martha Palacios, Fabio Barazza, Joëlle Goyette Pernot

Atmosphere,  2022, vol. 13, no. 1, article no. 92

Lien vers la publication

Résumé:

Radon is a natural and radioactive gas that can accumulate in indoor environments. Indoor radon concentration (IRC) is influenced, among other factors, by meteorology, which is the subject of this paper. Weather parameters impact indoor radon levels and have already been investigated, but rarely in Switzerland. Moreover, there is a strong need for a better understanding of the radon behaviour inside buildings in Switzerland for public health concerns as Switzerland is a radon prone area. Based on long-term, continuous, and hourly radon measurements, radon distributions classified according to different weather event definitions were investigated and then compared at three different study sites in Western Switzerland. Outdoor temperature influences the most indoor radon, and it is globally anti-correlated. Wind influences indoor radon, but it strongly depends on intensity, direction, and building characteristics. Precipitation influences periodically indoor radon levels relatively to their intensity. Atmospheric pressure and relative humidity do not seem to be huge determinants on IRC. Our results are in line with previous findings and provide a vivid example in Western Switzerland. This paper underlines the different influence complexities of radon, and the need to communicate about it within the broader public and with construction professionals, to raise awareness.

Long-Term Impacts of Weather Conditions on Indoor Radon Concentration Measurements in Switzerland
Article scientifique

Rey Joan Frédéric, Goyette Stéphane, Mauro Gandolla, Martha Palacios, Fabio Barazza, Goyette Pernot Joëlle

Atmosphere, 2022 , vol.  13(1)

Lien vers la publication

Résumé:

Radon is a natural and radioactive gas that can accumulate in indoor environments. Indoor radon concentration (IRC) is influenced, among other factors, by meteorology, which is the subject of this paper. Weather parameters impact indoor radon levels and have already been investigated, but rarely in Switzerland. Moreover, there is a strong need for a better understanding of the radon behaviour inside buildings in Switzerland for public health concerns as Switzerland is a radon prone area. Based on long-term, continuous, and hourly radon measurements, radon distributions classified according to different weather event definitions were investigated and then compared at three different study sites in Western Switzerland. Outdoor temperature influences the most indoor radon, and it is globally anti-correlated. Wind influences indoor radon, but it strongly depends on intensity, direction, and building characteristics. Precipitation influences periodically indoor radon levels relatively to their intensity. Atmospheric pressure and relative humidity do not seem to be huge determinants on IRC. Our results are in line with previous findings and provide a vivid example in Western Switzerland. This paper underlines the different influence complexities of radon, and the need to communicate about it within the broader public and with construction professionals, to raise awareness.

2021

Influence of some specific meteorological events on indoor radon dynamic in western Switzerland
Article scientifique

Rey Joan Frédéric, Goyette Stéphane, Martha Palacios, Fabio Barazza, Mauro Gandolla, Goyette Pernot Joëlle

Journal of Physics: Conference Series, 2021 , vol.  2042, no  012138

Lien vers la publication

Résumé:

Radon is a natural radioactive gas that may cumulate in indoor environments. The impacts of weather events on indoor radon concentration had been explored in different places around the world but only marginally in Switzerland. Using basic statistical analysis, this study investigates different meteorological parameters' influence on indoor radon concentrations and shows that outdoor air temperature is the most influential beyond others. Finally, this paper highlights the importance of radon dynamic in buildings, a topic often overlooked by construction professionals and the broader public in Switzerland.

2020

Shifting velocity of temperature extremes under climate change
Article scientifique

Rey Joan Frédéric, Guillaume Rohat, Goyette Stéphane, Marjorie Perroud, Jérôme Kasparian

Environmental Research Letters, 2020

Lien vers la publication

Résumé:

Rapid changes in climatic conditions threaten both socioeconomic and ecological systems, as these might not be able to adapt or to migrate at the same pace as that of global warming. In particular, an increase of weather and climate extremes can lead to increased stress on human and natural systems, and a tendency for serious adverse effects. We rely on the EURO-CORDEX simulations and focus on the the screen-level daily mean temperature (T2m). We compare the shifting velocities of the cold and hot extremes with these of the associated central trends, i.e. the arithmetical mean or median. We define the extremes relative to the T2m distribution as it evolves with time over the period of 1951–2100. We find that temperature extremes shift at a similar velocity compared to that of the central trends. Accordingly, the T2m probability distribution shifts mostly as a whole, as the tails of the distribution increase together with the central trends. Exceptions occur however in specific regions and for the clustering of warm days, which shifts slower than all other extremes investigated in this study.

Human an Building - envelop interaction in open area - Which constructive choises to improve summery comfort?
Article scientifique

Rey Joan Frédéric, Victor Guillot, Peter Gallinelli, Reto Camponovo

Erneuern! Sanierungstrategien für den Gebäudepark, 2020

Lien vers la publication

Résumé:

Brenet : Das Status-Seminar wird durch den Verein brenet organisiert. brenet versteht sich als Plattform, an die sich Industrie, Gewerbe, Planende wie auch die Behörde zu den Themen Nachhaltiges Bauen, Quartierentwicklung, Gebäudetechnik und Erneuerbare Energien wenden können.
Im Nationalen Kompetenznetzwerk im Bereich Gebäudetechnik und Erneuerbare Energien (brenet) erforschen seit 2001 Institute von Fachhochschulen, Empa (ETH-Annexanstalt) und unabhängigen privaten Organisationen institutsübergreifend Lösungen für eine nachhaltige Zukunft.
Durch die verschiedenen Kompetenzen der brenet-Mitgliederinstitute ergeben sich dank der Synergien innovative Lösungen für Forschungs- und Entwicklungsvorhaben aber auch für neue Dienstleistungen. brenet-Projekte haben den klaren Schwerpunkt auf der praxisorientierten und wirtschaftlichen Umsetzung. Mit der klaren Mission, die Zukunft aktiv zu gestalten und an Lösungen mit einem langen, nachhaltigen Zeithorizont mitzuwirken.

2023

Autodigit-RAD :
Conférence ArODES
towards an automation of the radon’s concentration dataflow in a new and innovative building

Joan Frédéric Rey, Matias Cesari, Frédéric Montet, M. Gandolla, Leewan Bonvin, Vincent Bourquin, C. L. Jacot, Justine Roman, Sebastian Duque Mahecha, Sergi Aguacil Moreno, Jean Hennebert, Joëlle Goyette Pernot

Journal of Physics: Conference Series ; Proceedings of cisbat 2023, the built environment in transititon, Hybrid International Scientific Conference, 13-15 September 2023, Lausanne, Switzerland

Lien vers la conférence

Résumé:

Radon is a noble, natural, and radioactive gas coming mainly from the ground which might accumulate indoors and lead each year to 200-300 deaths from lung cancer in Switzerland. A brand new and innovative living lab will be built as of 2023 in Fribourg (Switzerland) which will allow to tackle the built environment and the relationship with its occupants. Among a large panel of environmental parameters, radon gas will be continuously monitored under and around the building as well as in the building envelope. This paper aims to present the overall process of the radon dataflow: 1) design of the sensor probes, 2) implementation of the radon sensor probes in the ground and 3) go-live with the data sharing platform with the building users. Such an infrastructure will bring the opportunity to researchers to lead new and innovative radon-related research.

Evaluation of the impact of ventilation system daily operation on air quality, comfort and well-being in primary schools
Conférence ArODES

Joan Frédéric Rey, Matias Cesari, Christophe Brunner, Y. Muller, Claude-Alain Roulet, Joëlle Goyette Pernot

Journal of Physics: Conference Series ; Proceedings of cisbat 2023, the built environment in transititon, Hybrid International Scientific Conference, 13-15 September 2023, Lausanne, Switzerland

Lien vers la conférence

Résumé:

The Scol'air-FR project is issued from the need to establish an inventory of indoor air quality conditions in primary schools of the canton of Fribourg, Switzerland. In Fribourg, the official trend is to promote mechanical ventilation systems in schools to ensure a good air quality. A properly designed, built, commissioned, and operated mechanical ventilation system should be able to deliver the anticipated flow rate, regardless of who uses it - the only person involved being the person responsible for ventilation system operation. In some cases, however, the expected objectives are not achieved. This similar observation applies to natural ventilation. A good ventilation concept, properly implemented and operated, should also achieve the same objective if the outdoor air quality is good. The aim of this article is to identify differences, in terms of indoor air quality and well-being, between naturally and mechanically ventilated schools. Moreover, we expect to identify if trends are attributable to the operation of ventilation systems or to occupant behaviours. We observed lower carbonic gas levels in building equipped with mechanical ventilation systems. This finding can be extended to VOCs and relative humidity. We also identified different and recurrent issues among the different mechanical ventilation systems. Our results highlight issues measured in buildings equipped by mechanical ventilation systems are mostly related to the balance of the system, while in natural ventilation systems, IAQ related issues are mainly due to the present context and its influences on occupants' behaviour.

Evaluation of the impact of ventilation system daily operation on air quality, comfort and well-being in primary schools
Conférence

Goyette Pernot Joëlle, Rey Joan Frédéric, Cesari Matias, Claude-Alain Roulet, Christophe Brunner, Yan Muller

CISBAT 2023, 13.09.2023 - 15.09.2023, Lausanne

Lien vers la conférence

Résumé:

Indoor air quality (IAQ) in educational facilities is a major concern for children’s health and development and, consequently, for the authorities in charge of the school buildings. For instance, it has been shown that children’s cognitive performances are affected at high levels of CO2 in classrooms. The Scol’air-FR project is issued from the need to establish an inventory of indoor air quality conditions in primary schools of the canton of Fribourg. It is the first project undertaken by the recently formed association ORTQAI (www.ortqai.ch), which aims to aggregate and spread IAQ-related knowledge.
The main research question addressed by the Scol’ar-FR project is:
Can IAQ and well-being differences be identified among naturally and mechanically ventilated schools? Moreover, are these trends attributable to the operation of the ventilation systems or to the occupant’s behaviors?
Over an 18-month period, three different measurement campaigns were carried out in three different seasons: Autumn 2021, Winter 2022, Summer 2022. A second Winter campaign is planned between January and March 2023. In total, 24 schools were each monitored over one full week periods across the canton. The selected schools were chosen to be representative of the linguistic context, the ventilation system’s type, and area’s type (rural, suburban, urban). The sample comprises 13 naturally ventilated schools (passive ventilation), and 11 with mechanical ventilation systems (mostly double flux systems. In each school, two classrooms and one outdoor nearby location were systematically investigated with CO2, particulate matter, VOCs, radon, air temperature and relative humidity. Qualitative surveys were addressed to teachers to assess users’ comfort and activities in their classrooms.
Autumn 2021 campaign’s results are presented below. Results for Winter 2022 and Summer 2022 campaigns will also be available for the CISBAT conference. CO2 averaged mean and maximum levels during class hours were respectively 725 ppm and 1202 ppm for mechanically ventilated classroom and 840 ppm and 1796 ppm for naturally ventilated classroom. With regard to total VOCs, a large difference appeared between mechanically and naturally ventilated classrooms with respectively a 75-percentile located at 150 μg/m3 and 350 μg/m3 equivalent in toluene. These findings are similar for
PM and radon, which depicts a lower IAQ in naturally ventilated classrooms. As expected, all monitored pollutants are recorded with lower concentrations at the outdoor measurement points.
These preliminary results reveal an IAQ difference between naturally and mechanically ventilated classrooms, emphasizing disparities within the canton. Besides, Winter 2021 campaign was carried out while COVID-19 protection measures were in force, which indirectly implies a better IAQ than before the pandemic. Results also support a strong need to increase knowledge on ventilation systems’ real operation modes in schools. Four schools equipped with mechanical ventilation systems will be further analyzed to clearly identify their deficiencies and to optimize their operation. On the long-term, these results will be useful to address a list of recommendations for both ventilation system installers, maintenance staff and building owners.

2021

Does aerosols affect radon active measurements ?
Conférence
Intercomparing high-grade and low cost radon sensors under typical indoor aerosol

Rey Joan Frédéric

ROOMS 2021, 13.10.2021 - 15.10.2021, Fribourg, Suisse

Lien vers la conférence

Influence of some specific meteorological events on indoor radon dynamic in western Switzerland
Conférence

Rey Joan Frédéric, Goyette Stéphane, Mauro Gandolla, Fabio Barazza, Martha Palacios, Goyette Pernot Joëlle

CISBAT 2021, 08.09.2021 - 10.09.2021, Lausanne

Lien vers la conférence

Réalisations

Médias et communication
Nous contacter
Suivez la HES-SO
linkedin instagram facebook twitter youtube rss
univ-unita.eu www.eua.be swissuniversities.ch
Mentions légales
© 2021 - HES-SO.

HES-SO Rectorat