Valorisez vos réalisations phares sur People@HES-SO Plus d'infos
PEOPLE@HES-SO – Annuaire et Répertoire des compétences
PEOPLE@HES-SO – Annuaire et Répertoire des compétences

PEOPLE@HES-SO
Annuaire et Répertoire des compétences

Aide
language
  • fr
  • en
  • de
  • fr
  • en
  • de
  • SWITCH edu-ID
  • Administration
ID
« Retour
Zarkadis Nikos

Zarkadis Nikos

Professeur HES associé

Compétences principales

Building performance

Building Physics

Thermal & Visual Comfort

Energy modeling and simulation

Smart Building

Machine Learning

User behaviour and well-being

  • Contact

  • Enseignement

  • Publications

  • Conférences

Contrat principal

Professeur HES associé

Bureau: Bi13

Haute école du paysage, d'ingénierie et d'architecture de Genève
Rue de la Prairie 4, 1202 Genève, CH
hepia
Domaine
Technique et IT
Filière principale
Technique des bâtiments

Professeur Nikos Zarkadis est né en 1979 à Athènes, Grèce. Il est titulaire d'un bachelor en Énergie et en Environnement (TEI de Crète, 2003), d'un master en Technologies de Protection d'Environnement (Université de Crète, 2008) et d'un doctorat de l'Ecole Polytechnique Fédérale de Lausanne (EPFL, 2015) dans le domaine du contrôle prédictif des systèmes et du confort des occupants dans les bâtiments. En 2015 Il a rejoint la filière de Technique des Bâtiments de l'Haute école du paysage, d'ingénierie et d'architecture (HEPIA) de l’HES-SO Genève pour y être nommé Professeur Assistant en 2017. Il enseigne les cours de Performances Énergétiques des Bâtiments et de Bases de régulation et mesures. Entre 2003 et 2010, il a également travaillé comme ingénieur et consultant dans le secteur privé. Son travail et sa recherche ciblent à optimiser le fonctionnement et la performance des systèmes de bâtiments (enveloppe, éclairage artificiel, CVC, stores, etc.) afin de réduire la consommation d’énergie, de respecter les caractéristiques particuliers du bâtiment ainsi que celles de son environnement et d’améliorer le confort visuel et thermique de ses utilisateurs.

Champs de recherche:

  • Efficience énergétique des bâtiments
  • Contrôle intelligent et prédictive des systèmes
  • Physique du bâtiment
  • Confort visuel et thermique d'occupants
  • Comportement énergétique d'occupants
  • Exploration de données numériques (data mining & machine learning)
BA HES-SO en Architecture - Haute école du paysage, d'ingénierie et d'architecture de Genève
  • Performances énergétiques des bâtiments 1 et 2
  • Bases de régulation et mesures
MSc HES-SO en Engineering - HES-SO Master
  • Fondements de l'énergie et du génie environnemental

2015

Duration models for activity recognition and prediction in buildings using hidden markov models
Article scientifique

Antonio Ridi, Zarkadis Nikos, Gisler Christophe, Hennebert Jean

2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2015 , pp.  1-10

Lien vers la publication

2015

Duration models for activity recognition and prediction in buildings using hidden Markov models
Conférence ArODES

Antonio Ridi, Nikos Zarkadis, Christophe Gisler, Jean Hennebert

Proceedings of 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), 19-21 October 2015, Paris, France

Lien vers la conférence

Résumé:

Activity recognition and prediction in buildings can have multiple positive effects in buildings: improve elderly monitoring, detect intrusions, maximize energy savings and optimize occupant comfort. In this paper we apply human activity recognition by using data coming from a network of motion and door sensors distributed in a Smart Home environment. We use Hidden Markov Models (HMM) as the basis of a machine learning algorithm on data collected over an 8-month period from a single-occupant home available as part of the WSU CASAS Smart Home project. In the first implementation the HMM models 24 hours of activities and classifies them in 8 distinct activity categories with an accuracy rate of 84.6%. To improve the identification rate and to help detect potential abnormalities related with the duration of an activity (i.e. when certain activities last too much), we implement minimum duration modeling where the algorithm is forced to remain in a certain state for a specific amount of time. Two subsequent implementations of the minimum duration HMM (mean-based length modeling and quantile length modeling) yield a further 2% improvement of the identification rate. To predict the sequence of activities in the future, Artificial Neural Networks (ANN) are employed and identified activities clustered in 3 principal activity groups with an average accuracy rate of 71-77.5%, depending on the forecasting window. To explore the energy savings potential, we apply thermal dynamic simulations on buildings in central European climate for a period of 65 days during the winter and we obtain energy savings for space heating of up to 17% with 3-hour forecasting for two different types of buildings.

2013

Towards reliable stochastic data-driven models applied to the energy saving in buildings
Conférence ArODES

Antonio Ridi, Nikos Zarkadis, Gérôme Bovet, Nicolas Morel, Jean Hennebert

Proceedings of CISBAT 2013 - Cleantech for Smart Cities Buildings - From Nano to Urban Scale, 4-6 September 2013, Lausanne, Switzerland

Lien vers la conférence

Résumé:

We aim at the elaboration of Information Systems able to optimize energy consumption in buildings while preserving human comfort. Our focus is in the use of state-based stochas- tic modeling applied to temporal signals acquired from heterogeneous sources such as distributed sensors, weather web services, calendar information and user triggered events. Our general scienti_c objectives are: (1) global instead of local optimization of building automation sub-systems (heating, ventilation, cooling, solar shadings, electric lightings), (2) generalization to unseen building con_guration or usage through self-learning data- driven algorithms and (3) inclusion of stochastic state-based modeling to better cope with seasonal and building activity patterns. We leverage on state-based models such as Hidden Markov Models (HMMs) to be able to capture the spatial (states) and temporal (sequence of states) characteristics of the signals. We envision several application layers as per the intrinsic nature of the signals to be modeled. We also envision room-level systems able to leverage on a set of distributed sensors (temperature, presence, electricity consumption, etc.). A typical example of room-level system is to infer room occupancy information or activities done in the rooms as a function of time. Finally, building-level systems can be composed to infer global usage and to propose optimization strategies for the building as a whole. In our approach, each layer may be fed by the output of the previous layers. More speci_cally in this paper, we report on the design, conception and validation of several machine learning applications. We present three di_erent applications of state- based modeling. In the _rst case we report on the identi_cation of consumer appliances through an analysis of their electric loads. In the second case we perform the activity recognition task, representing human activities through state-based models. The third case concerns the season prediction using building data, building characteristic parameters and meteorological data.

Réalisations

Médias et communication
Nous contacter
Suivez la HES-SO
linkedin instagram facebook twitter youtube rss
univ-unita.eu www.eua.be swissuniversities.ch
Mentions légales
© 2021 - HES-SO.

HES-SO Rectorat