Valorisez vos réalisations phares sur People@HES-SO Plus d'infos
PEOPLE@HES-SO – Annuaire et Répertoire des compétences
PEOPLE@HES-SO – Annuaire et Répertoire des compétences

PEOPLE@HES-SO
Annuaire et Répertoire des compétences

Aide
language
  • fr
  • en
  • de
  • fr
  • en
  • de
  • SWITCH edu-ID
  • Administration
« Retour
Soutrenon Mathieu

Soutrenon Mathieu

Professeur-e HES Associé-e

Compétences principales

Additive and hybrid manufacturing

Inkjet

Rheology

Concept development

Nanoparticle synthesis

Design for Manufacturing

Catalysis

  • Contact

  • Enseignement

  • Recherche

  • Publications

  • Conférences

Contrat principal

Professeur-e HES Associé-e

Téléphone: +41 58 606 87 89

Bureau: ENP.23.N103

HES-SO Valais-Wallis - Haute Ecole d'Ingénierie
Rue de l'Industrie 23, 1950 Sion, CH
HEI - VS
Domaine
Technique et IT
Filière principale
Systèmes industriels
Institut
Institut Systèmes industriels
BSc HES-SO en Systèmes industriels - HES-SO Valais-Wallis - Haute Ecole d'Ingénierie
  • Elements de machines
  • Conception et construction
  • Fabrication additive - Impression 3D
MA BFH/HES-SO en Architecture - HES-SO Master
  • Fabrication additive - Impression 3D
  • Fabrication additive - Techniques d'impression 3D
  • Optimisation topologique

En cours

Leading House for the Middle East and North Africa - MENA Maroc : Transforming Biomass Waste for Sustainable Water Management: Advanced Pyrolysis Techniques for Biochar Production. MS-2024-35
AGP

Rôle: Requérant(e) principal(e)

Financement: HES-SO Rectorat

Description du projet : Transforming Biomass Waste for Sustainable Water Management: Advanced Pyrolysis Techniques for Biochar Production, dans le cadre de l'appel à projets conjoint Maroc-Suisse 2024 ( Leading House MENA)

Equipe de recherche au sein de la HES-SO: Soutrenon Mathieu , Oliveira Da Silva Wanderson

Partenaires académiques: VS - Institut Systèmes industriels

Partenaires professionnels: Université Rabat

Durée du projet: 01.03.2025 - 30.04.2027

Montant global du projet: 25'000 CHF

Statut: En cours

Reactive Inkjet Printing of non-noble metal catalysts for CO2 Reduction Reaction
AGP

Rôle: Requérant(e) principal(e)

Financement: HES-SO Rectorat

Description du projet : Converting CO2 into valuable chemicals is a solution towards addressing the current energy and environmental challenges. Currently, CO2 recycling might be performed with thermochemical, biochemical, and photochemical reducing processes, however those are limited by their high cost, since high temperature and pressure are needed, and/or by slow kinetic processes, which limit their scalability and sustainability. CO2 electroreduction has been proposed to overcome these drawbacks since it can operate at normal pressure and room temperature. The generated products can be controlled by the catalyst type and applied potential. However, conventional synthesis process of catalysts for the CO2 reduction reaction (CO2RR) often involves high temperature, long reaction time, and numerous synthesis steps. A breakthrough is crucial to address these limitations and enable their scalable and large production. Reactive Inkjet Printing (RIP) holds great promise as a fast and scalable synthesis process at ambient conditions. This study aims to develop and optimize a process for large scale manufacturing of non-noble metal catalysts for CO2RR, particularly NiFe, by RIP. They will be produced in situ on cathodes for Membrane Electrode assembly (MEA) reactors. This project is a collaboration between the iPrint institute of HEIA-FR specialized in inkjet printing and researchers on functional materials for electrochemical applications at HEI-VS in Sion. NiFe catalysts are a promising electrocatalyst family for CO2RR. They have been shown to have high activity and selectivity to convert CO2 into CO. Ni and Fe, being naturally abundant elements, offer a cost-effective and sustainable alternative to existing catalysts that rely on noble metals like gold, silver, and palladium. RIP consists of printing metal precursors-based inks followed by a post-treatment to reduce them into the desired electrocatalysts. Compared to inkjet printing of nanoparticles-based catalyst inks, RIP inks have the unmatched advantage of being particle-free and therefore significantly cheaper and easier to print. Using inkjet as a deposition method comes with additional key benefits, it is easily scalable and production costs can be reduced by using minimal amounts of materials and high throughput. The control of the deposited droplet volume results in very homogeneous layers of catalysts. Different post-treatments, such as plasma, e-beam and xenon flash lamps, will be investigated to minimize production time and energy consumption compared to current methods such as calcination. Nitrogen doping and additional micro structuration by inkjet printing will be used to enhance the activity and selectivity of the catalyst, leading to higher production of valuable chemicals. The catalyst performances will be investigated by electrochemical tests (cyclic voltammetry, chronoamperometry, etc.) an in MEA reactors to evaluate the CO2RR in terms of reaction efficiency, selectivity, and stability. In addition, physical characterization of the synthesized electrocatalysts will be performed by using XRD, XPS, TEM, EDX and others. The developed cathodes could be relevant for CO2 conversion after post combustion captures from incinerators and can be tested in collaboration with existing partners. The proposed method for NiFe catalysts can be extended to other transition metals and reactions such as oxygen or nitrogen reduction reaction, resulting in follow-up projects for electrolyzers, fuel cells, etc.

Equipe de recherche au sein de la HES-SO: Girard Hervé , Grandgeorge Paul , Wenger Raphaël , Berthouzoz David , Baer Edouard , Mauron Muriel , Soutrenon Mathieu , Audriaz Stéphane , Schneuwly Vincent , Roubaty Fabrice , Balestra Gioele , Brodard Patricia , Castens Vitanov Lucie , Mabillard Alexandre , Eltschinger Yannic , Guinot Guillaume , Chabert Ull Carlos , Masserey Romain , Oliveira Da Silva Wanderson

Partenaires académiques: FR - EIA - Institut IPRINT; Soutrenon Mathieu, VS - Institut Systèmes industriels

Durée du projet: 02.02.2024 - 04.08.2025

Montant global du projet: 220'000 CHF

Statut: En cours

Terminés

Demonstrator for CO2 membrane separtion - CO2Ex
AGP

Rôle: Requérant(e) principal(e)

Financement: EPFL

Description du projet : This document is a proposal for developing a CO2 filtration demonstrator using a graphene membrane reactor for the Laboratory of Advanced Separation (LAS) of Prof. Kumar Agrawal from EPFL Valais Wallis. The demonstrator will be an automated and scaled down version of an existing unit run conjointly by Gaznat SA and the LAS in Aigle. The demonstrator will be operated in the new satellite building situated next to the HES-SO i23 building as part of the canton of Valais financed demonstrator in combination with a Metal-Organic Framework (MOF) based CO2 capture demonstrator from the group of Prof. Wendy Queen. This document presents specifications, a given layout for the demonstrator, a budget and planning. 3. Specifications The demonstrator specifications are based on the unit located in Aigle. A schematic of the original demonstrator is provided in Figure 1. An example of a membrane module is shown in Figure 2. This layout serves as a reference for the satellite demonstrator, the major change is that the new demonstrator will be automated for flow rate and temperature control but not for pressure regulation. The demonstrator is set to work with 1kg of CO2/day, corresponding flow rate and pressure for the gas streams in the demonstrator are listed in Table 1.

Equipe de recherche au sein de la HES-SO: Roduit Alain , Joris Steve , Berthouzoz David , Soutrenon Mathieu , Schopfer Mathieu , Darbellay Jérôme , Lenoir Cédric , Clivaz Cédric , Trottet Grégory , Oliveira Da Silva Wanderson , Bridy Robin

Partenaires académiques: VS - Institut Systèmes industriels; Soutrenon Mathieu, VS - Institut Systèmes industriels

Durée du projet: 01.03.2024 - 30.04.2025

Montant global du projet: 182'500 CHF

Statut: Terminé

Projet interinstitutionnel SHE 2024 - Efficient production of ammonia as green energy carrier
AGP

Rôle: Requérant(e) principal(e)

Financement: VS - Institut Systèmes industriels; Canton du Valais; EPFL Valais-Wallis; VS - Institut Systèmes industriels

Description du projet : Energy, chemical, and agricultural sectors rely heavily on a few key gas molecules. Among them, hy-drogen and ammonia are critical in the context of transition to renewable energy. Ammonia is manufac-tured at a massive scale (~180 million tons/year in 2015) driven by demand for fertilizers [1,2]. It has emerged as one of the most promising carbon-free energy carriers with a high hydrogen content (17.7 wt%) and energy density of 3.5 kWh/l in the liquid state. It is well-suited to solve one of the key bottlenecks in hydrogen-based economy, i.e., the storage of hydrogen in its high-energy-density liquid state (2.4 kWh/l) is expensive because of its large compressibility factor and a low boiling point [3,4]. Ammonia, on the other hand, can be easily liquified at 20 ºC near 10 bars. A highly promising route is to generate H2 from ammonia by thermocatalytic decomposition [5,6]. This process yields a mixture of ammonia, hydrogen, and nitrogen with ammonia as a minor component. However, for the use of hydrogen in fuel cell, the concentration of ammonia should be less than 100 parts per billion by volume (ppbv). Direct combustion of ammonia containing mixtures produces NOx which are indirect greenhouse gases. Therefore, it is crucial to develop a separation process which can remove residual ammonia from the decomposed stream and recycle recovered ammonia back to the reactor. Given that the catalytic decomposition of ammonia is most efficient at elevated tem-perature, high-temperature separation process (200-450 ºC) integrated with the catalytic decomposition is crucial to achieve a high energy-efficiency and a low process footprint. With this project, we propose to characterize an innovative membrane-based separation technology for recovering and recycling cracked ammonia from the catalytic reactor. A unique and novel aspect of these membranes will be that they will be able to operate in a wide range of temperature (e.g., up to 300 ºC) and will yield a high ammonia selectivity. These membranes will also yield high ammonia per-meance (flow rate of purified gas per unit area per unit transmembrane pressure difference) which will allow us to miniaturize the separation unit with possibility to combine the reaction and separation in a small footprint ideal for applications in transportation where ammonia will be an energy carrier. Overall, the innovative concept developed here will improve the energy efficiency of ammonia production for its use as a clean and sustainable energy carrier.

Equipe de recherche au sein de la HES-SO: Girard Hervé , Bruchez Yvan , Joris Steve , Soutrenon Mathieu , Reymond Lucie , Lenoir Cédric , Trottet Grégory , Oliveira Da Silva Wanderson , Bridy Robin

Partenaires académiques: EPFL

Durée du projet: 15.03.2024 - 31.03.2025

Montant global du projet: 161'000 CHF

Statut: Terminé

TexUp: Innovative and sustainable acoustic panels made out of recycled textile - GRS-021-23
AGP

Rôle: Requérant(e) principal(e)

Financement: VS - Institut Systèmes industriels; Gebert Rüf Stiftung

Description du projet : TexUp is an innovative project which aims at transforming old clothes into acoustic panels to solve two major problems: textile waste and noise nuisance in professional spaces. Textile waste is a growing problem, while noise is increasingly affecting the health and well-being of employees. TexUp improves the working environment of companies (SME and large companies that have offices or open spaces) by offering a sustainable acoustic solution with a unique design. The visual aspect provided by the recycled textile material undoubtedly stands out from all competitors and was found to be very popular with customers.

Equipe de recherche au sein de la HES-SO: Berthouzoz David , Soutrenon Mathieu , Baudin Sylvain , Héritier Boris , Mabillard Alexandre , Darbellay Jérôme

Durée du projet: 01.09.2023 - 30.11.2024

Montant global du projet: 160'000 CHF

Statut: Terminé

Vers un cracking de l'ammoniac en hydrogène avec un matériau durable pour le transport routier. ACT
AGP

Rôle: Requérant(e) principal(e)

Financement: HES-SO Rectorat; neology

Description du projet : Neology est une jeune entreprise travaillant sur des solutions pour la conversion de l'ammoniac (NH3) en hydrogène (H2), afin d'utiliser celui-ci comme vecteur énergétique et décarboner l'économie du transport lourd. Aujourd'hui, Neology se concentre sur le développement d'un système « on-board » pour camion électrique alimenté par une pile à combustible. Solution intégrée de Neology : un cracker NH3 combiné avec une membrane de filtration La thermo-conversion de l'ammoniac en hydrogène et azote se fait à haute température >900°C. Des catalyseurs sont utilisés pour réduire la température de cette réaction ; le ruthénium a été identifié comme le catalyseur monométallique le plus actif[1]. Pour coupler un cracker avec une pile à combustible (PEMFC), l'hydrogène doit être séparé de l'azote. Avec un encombrement réduit, la solution la plus mature technologiquement est constitué d'une membrane de palladium. Ruthénium et palladium appartiennent aux platinoïdes, des métaux rares et chers. Leur extraction a un gros impact environnemental. Les principaux pays producteurs sont la Russie et l'Afrique du Sud. La transition énergétique se traduit par une augmentation de leur demande avec un risque de pénurie à moyen terme. En ajoutant, la guerre en Ukraine et la crise de la chaîne d'approvisionnement post-Covid, le futur de Neology est incertain sans alternatives à ces matériaux. Le modèle économique de Neology n'est pas viable avec utilisant le ruthénium comme catalyseur et de palladium pour la filtration. Par rapport à ses concurrents, Neology souhaite se démarquer en basant ses développements produits sur des alternatives durables à ces matériaux. Neology est en contact avec l'EMPA pour substituer le palladium par du vanadium. Pour le ruthénium, les alternatives les plus prometteuses comme catalyseur pour la décomposition du NH3 sont des imides alcalins, notamment le lithium imide Li2NH. Le lithium est abondant et 250x moins cher que ruthénium dont le cours est passé de 10 à 15 kCHF, avec un pic à 25kCHF entre 2021 et 2022. Le prix du lithium imide, se situe lui autour de 1 kCHF/kg. Valider ce choix est le but du projet.

Equipe de recherche au sein de la HES-SO: Joris Steve , Berthouzoz David , Baer Edouard , Soutrenon Mathieu , Aguiar E Silva Filipe , Rodriguez Arbaizar Mikel

Partenaires académiques: VS - Institut Systèmes industriels; Soutrenon Mathieu, VS - Institut Systèmes industriels

Durée du projet: 01.04.2023 - 10.05.2024

Montant global du projet: 55'000 CHF

Statut: Terminé

Fabrication additive jet d'encre de catalyseurs à base de matériaux poreux structurés : MOFs et POFs - 3DP-SPC (3D Printing of Structured Porous Catalyst)
AGP

Rôle: Requérant(e) principal(e)

Financement: HES-SO Rectorat

Description du projet : Heterogeneous catalysis is essential to address current environmental challenges such as CO2 conversion or cleaner and more energy efficient chemical processes. With record specific surface areas up to 7800m2.g-1 and pore sizes of a few nm, Metal-Organic-Framework (MOF), Porous-Organic-Framework (POF) and their derivatives are revolutionizing this discipline. Their properties can be easily tuned for different shape or size selectivity. If the design, the synthesis, and the applications of these emerging structured porous materials have been studied, the question of shaping them as functional components remains largely open. MOFs are generally synthesized in the form of powder of a few microns and structured in similar ways to other powder catalysts: they are extruded in monoliths, granulated in porous beads, or used as a coating. Another material serving as a binder is in most cases necessary to provide structural integrity. All these processes limit the adsorption and diffusion of reagents, thus reducing the exceptional properties of these materials. Additionally, they offer geometries with a poor flow control and give little exchange surface. Additive manufacturing allows the realization of imbricate structures with smart geometries optimizing material flow and activity, i.e. gyroid structures. Additive shaping of MOFs has been proposed, but mostly by extrusion processes that are not suitable for large scale production. On the other hand, powder-based approaches using inkjet such as binder jetting or SG-3DP are fast and scalable. To the best knowledge of the author, they were never used for MOF shaping. Considering that the CO2 conversion into fuels or chemical compounds is of utmost importance, a common copper-based MOF (HKUST-1) used as catalyst for CO2 reaction reduction (CO2RR) was selected with the goals to: 1. Shape this MOF with a powder-based additive manufacturing process using inkjet. HKUST-1 will be used as the powder bed material. 2. Print structures with imbricated levels of porosity, i.e. pores with dimensions of 0.5-5mm (printed), 1-500µm (printed material), and 1-10nm (cages of the advanced porous materials) to preserve the active surface area of the MOF. Hierarchical porosities will be created using porogens or by playing on solvent/binder interactions. 3. Study the in-situ MOF synthesis from precursors deposited by inkjet on a porous structure. This complementary approach paves the way for the realization of gradients of catalytic materials or the selective deposition of several catalysts in the same structure for multi-step synthesis reactions. 4. Use the printed part for continuous CO2RR. A demonstrator will be built. The realization of this project is planned with the support of researchers active in the synthesis of advanced porous materials (EPFL-Valais) and in the search for new shaping technologies. To limit the risks, this project is built in a way that intermediary results are directly transferable to close applications and/or to the construction of a demonstrator. The outcomes of this project can be transferred to: ' Other advanced porous materials and their derivatives, but also to catalysts in powder form ' Processes using similar structures like separation and filtration processes. This project goes in the direction of digitally fabricated catalysts, with geometries and performance tailored to the application. The valorization of the project is envisaged with companies of the chemical or pharmaceutical industries.

Equipe de recherche au sein de la HES-SO: Girard Hervé , Soutrenon Mathieu , Rodriguez Arbaizar Mikel , Clivaz Cédric , Karve Vikram , Masserey Romain

Partenaires académiques: VS - Institut Systèmes industriels; Soutrenon Mathieu, VS - Institut Systèmes industriels

Durée du projet: 01.12.2021 - 12.03.2023

Montant global du projet: 116'500 CHF

Statut: Terminé

S20_Mechanical Engineering
AGP

Rôle: Collaborateur/trice

Financement: VS - Institut Systèmes industriels

Description du projet : Projet destiné à l'acquisition de nouveaux projets et à la promotion des activités (publication, représentation,...) dans le domaine concerné.

Equipe de recherche au sein de la HES-SO: Girard Hervé , Amoos Serge , Bianchi Christophe , Cachelin Christian Pierre , Soutrenon Mathieu , Rapillard Laurent , Wittmann Christian , Paciotti Gabriel , Darbellay Jérôme , Clivaz Cédric , Trottet Grégory

Durée du projet: 01.01.2020 - 31.12.2020

Montant global du projet: 60'000 CHF

Statut: Terminé

The Inkjet Training
AGP

Rôle: Collaborateur/trice

Requérant(e)s: FR - EIA - Institut IPRINT, Bircher Fritz, FR - EIA - Institut IPRINT

Financement: Divers

Description du projet : A Hands-on Lab-based Course in Inkjet Engineering and Inkjet Chemistry.

Equipe de recherche au sein de la HES-SO: Caldi Jonathan , Wenger Raphaël , Bourguet Florian , Kolly Gaëtan , Bircher Fritz , Filliger Sebastian , Huber Benjamin , Renner Johannes , Mauron Muriel , Kessler Philip , Soutrenon Mathieu , Murith Loïc , Schneuwly Vincent , Varisco Massimo , Kuhlmann Martin , Muller Nicolas , Jemmely Yannick , Gugler Anne , Carrie Natalia , Ilano Céline

Partenaires académiques: FR - EIA - Institut IPRINT; Bircher Fritz, FR - EIA - Institut IPRINT

Durée du projet: 31.08.2015 - 31.12.2020

Montant global du projet: 332'965 CHF

Statut: Terminé

Microscalpel ultrasonique pour des interventions médicales robotique et de haute précision
AGP

Rôle: Collaborateur/trice

Requérant(e)s: Dispositifs médicaux

Financement: HES-SO Rectorat

Description du projet : Ultrasonic cutting instruments are widely used in various fields of surgery including e.g. peripheral vascular surgery; colorectal surgery; bariatric surgery, breast surgery; general and visceral surgery. Their precise control over coagulation and cutting allows to limit the tissue damage causing thermal spread and qualifies them as efficient and safe surgical tool. However, their use is restricted to certain surgery fields due to the size, weight and costs of the current systems. In order make this technology accessible in e.g. Cranio'Maxillofacial (CMF) surgery for specific tumor interventions, an ultrasonic Microscalpel with small form factor for high'precision surgery will be developed and characterized by using a concept for quasi 2'dimensional ultrasonic instrument based on a planar Ti'horn. The mechanical design of the novel Microscalpel will be developed and optimized with respect to high tip displacement (displacement of the tip > 50 'm) and reliability by using flat, quasi 2'D Ti horns, low aspect ratios as well as low driving voltages. In addition, the scalpel will be designed to satisfy the ergonomic and functional constraints for use in CMF surgery. In order to be able to drive the first functional demonstrators, an electronics for piezo supply voltages of up to +'150V will be developed. The control of the tip resonant motion will be realized digitally, to improve functionality (robustness vs. parameter variations, automatic gain setting) as compared to state'of'the'art analog scalpel control. A hermetic housing for the Microscalpel will be developed and optimized for human factor studies using additive manufacturing. Finally, using bench tests, the Microscalpel will be characterized using Laser Doppler Vibrometry. The relevant standards will be identified and implemented into the bench tests

Equipe de recherche au sein de la HES-SO: Praplan Charles , Bircher Fritz , Huber Benjamin , Moerschell Joseph , Broggini Christiane , Prieur Claudio , Soutrenon Mathieu , Hochstrasser Eric , Hofmann Martin , Carrie Natalia

Partenaires académiques: VS - Institut Systèmes industriels; FR - EIA - Institut IPRINT; Dispositifs médicaux

Durée du projet: 01.12.2016 - 28.02.2019

Montant global du projet: 230'286 CHF

Statut: Terminé

EcoSwissMade - Projet PrintCell Fabrication par impression 3D d'une pile à combustible à oxyde solide
AGP

Rôle: Collaborateur/trice

Requérant(e)s: VS - Institut Systèmes industriels, Bidaux Jacques-Eric, VS - Institut Systèmes industriels

Financement: HES-SO Rectorat

Description du projet : Le but de ce projet est de réaliser intégralement par impression 3D les trois composants principaux d'une pile à combustible à oxyde solide (SOFC pour Solid Oxyde Fuel Cell) que sont la cathode, l'électrolyte et l'anode. L'ensemble de ces trois éléments est appelés PEN (Positive electrode-Electrolyte-Negative electrode). La PEN est le coeur de la pile à combustible où se déroule la réaction chimique qui, en combinant le gaz combustible à l'oxygène de l'air, fournit le courant électrique. Les composants de la PEN ont des fonctions, des morphologies et des compositions différentes mais sont tous généralement produits à partir de poudres par pressage, tape casting, sprayage ou pulvérisation cathodique. Les PEN sont ensuite empilés de manière à augmenter la puissance fournie par la SOFC. Les composants des SOFC actuellement disponibles sur le marché, sont produit séparément et à l'aide de technologies différentes, ce qui nécessite un assemblage final. Ce projet permettra d'améliorer l'efficience de ce procédé de fabrication et sa flexibilité. Des piles de tailles et donc de puissances différentes pourraient être fabriquées à l'aide de la même imprimante. Cela permettrait à un même produit d'être décliné en fonction de l'application visée. Finalement, l'impression 3D permet d'envisager des designs novateurs intégrant des fonctionnalités directement aux électrodes comme par exemple : ' de la porosité contrôlée pour augmenter la densité de puissance ' des canaux pour faire circuler les gaz consommés et produits ' des grilles de renforts pour supporter les contraintes thermiques Le projet vise à réaliser une PEN fonctionnelle par impression 3D, en un seul cycle d'impression et un seul cycle de frittage. La PEN sera testée électrochimiquement et sa puissance sera mesurée.

Equipe de recherche au sein de la HES-SO: Girard Hervé , Gallay Steve , Bircher Fritz , Maître Gilbert , Kessler Philip , Soutrenon Mathieu , Carrie Natalia , Rodriguez Arbaizar Mikel , Rey-Mermet Samuel

Partenaires académiques: VS - Institut Systèmes industriels; FR - EIA - Institut IPRINT; Bidaux Jacques-Eric, VS - Institut Systèmes industriels

Durée du projet: 01.04.2017 - 28.02.2019

Montant global du projet: 200'000 CHF

Statut: Terminé

2025

Print-light-synthesis of electrocatalytically active gas diffusion electrodes for fuel cell applications
Article scientifique

Soutrenon Mathieu, Oliveira Da Silva Wanderson,

Journal of Materials Chemistry A, 2025

Lien vers la publication

2024

Densification and shaping of pure Cu-BTC powders using a solid-state chemical transformation
Article scientifique ArODES

Vikram V. Karve, Alexandre Mabillard, Jordi Espin Marti, Mehrdad Asgari, Wendy L. Queen, Mathieu Soutrenon

Materials Research Express,  11, 5, 055511

Lien vers la publication

Résumé:

MOFs are a class of porous crystalline materials whose unique properties have led to applicability in several fields ranging from gas adsorption to drug delivery. Despite their high potential, MOFs are usually found as fine powders, a property that can limit their use in industrial applications. Here, a novel approach is proposed to form densified Cu-MOF (Cu-BTC) powders and monoliths using 1,2-ethanedisulfonic acid (EDSA) as a densification agent. A MOF/EDSA mixture was heated to ∼150 °C; the molten EDSA not only promotes the growth of larger MOF crystallites, but also stimulates condensation reactions between the carboxylate-based MOF ligands, further binding the particles together. When this reaction was done in a stainless-steel die under pressure MOF-based monoliths could also be formed. Notably, using this approach, the MOF had a higher density, significantly improving the volumetric CO2 adsorption capacity. We believe this contribution provides the basis for future work wherein the intrinsic MOF particle surfaces can be selectively engineered to improve their properties towards shaping for industrial applications.

Biomass screening for syngas production by flash photopyrolysis
Article scientifique ArODES

Abderrahman Mellalou, Wanderson O. Silva, Mathieu Soutrenon, Hubert H. Girault, Abdelkader Outzourhit, Jones Alami, Fouad Ghamouss

RSC Advances,  2024, 14, 17, 11706-11714

Lien vers la publication

Résumé:

A few seconds flash photopyrolysis is used as efficient screening tool for the investigation of selected biomass in producing syngas, hydrogen and biochar. This innovative approach allowed rapid pyrolysis of the biomass, which was followed by a precise gas analysis and quantification, using Mass Spectrometry (MS). The analysis of the gas composition from three distinct biomass wastes in this study provides new insights into their thermochemical characteristics, expanding thus our knowledge of the potential of the selected biomass resources for the production of carbon, syngas, and/or hydrogen-rich gas production. This enhanced characterization revealed the potential of biomass transformation in contributing to innovative green energy sustainable solutions.

2023

Hydrogen production by waste tire recycling by photo-pyrolysis
Article scientifique ArODES

Wanderson O. Silva, Bhawna Nagar, Dennis Ellersiek, Luc Bondaz, Jordi Espin, Mathieu Soutrenon, Hubert H. Girault

Sustainable Energy & Fuels,  2023, 7, 24, 5693-5703

Lien vers la publication

Résumé:

Waste tires are a major environmental concern due to their non-degradable nature and the large area occupied by them in landfills worldwide. Several recycling processes have been applied to minimize the high amount of waste tire disposal; in particular, pyrolysis has gained more attention since it can minimize the emission of toxic gases. In this study, we present a new process for treating waste tires called “photo-pyrolysis”. End-of-life tires, in the form of powder (100–200 μm) and/or small shreds, were converted in a few seconds (2.4 to 20 s), by using high-intensity flash light irradiation from a xenon lamp, into valuable products such as tire pyrolysis oil (TPO) and syngas, and a carbon-rich solid residue. 44 wt% was recovered as a solid of which 32.3 wt% was related to carbon and 11.7 wt% to the metals and inorganic fillers. The next 36 wt% was attributed to a mixture of gases (mainly hydrogen, ethylene, and methane) and the remaining 20 wt% was produced as a liquid fraction (TPO). Therefore, photo-pyrolysis is proposed as a new and eco-friendly strategy for recycling end-of-life tires, which can be industrialized with continuous processing systems, and used not only for tire recycling but also for other solid organic wastes.

2019

Selective inkjet coating of printed circuit boards with paraffin wax
Conférence ArODES

Johannes Renner, Reto von Arx, Mathieu Soutrenon, Gilbert Gugler, Fritz Bircher

Proceedings ECS (European Coating Symposium) 2019, 8-11 September 2019, Heidelberg, Germany

Lien vers la conférence

Résumé:

The protection of PCB’s is done by coating a protective film of wax over the boards. In this work it showed, that inkjet printing is a fast, accurate and economically competitive way to selectively coat PCB’s. The proposed process by 3Diam AG has been developed with the core competences of iPrint and is currently adapted for mass production.

2018

3D printing of cellulose by solvent on binder jetting
Conférence ArODES

Mathieu Soutrenon, Gabriel Billato, Fritz Bircher, Thomas Geiger

Proceedings of NIP & Digital Fabrication Conference, Printing for Fabrication, materials, applications, and process, 23-27 September 2018, Dresden, Germany

Lien vers la conférence

Résumé:

This project aims to 3D print wood by products. The printed parts are only made of cellulosic derivatives. The proposed process is powder based. Parts are made of semi-crystalline cellulose mixed with ethylcellulose (50/50). Similarly to binder jetting, successive layers of this mixture are spread out. Using an industrial inkjet print head from Fujifilm-Dimatix, isopropanol is selectively deposited on each of the powder layers. Isopropanol dissolve the ethyl cellulose, binding the cellulose particles together. The produced parts are brittle and require a post-treatment. A dedicated printer was built for this project. Ongoing research is done on optimizing of the layer formation and drying to increase mechanical properties.

Réalisations

Médias et communication
Nous contacter
Suivez la HES-SO
linkedin instagram facebook twitter youtube rss
univ-unita.eu www.eua.be swissuniversities.ch
Mentions légales
© 2021 - HES-SO.

HES-SO Rectorat