Valorisez vos réalisations phares sur People@HES-SO Plus d'infos
PEOPLE@HES-SO – Annuaire et Répertoire des compétences
PEOPLE@HES-SO – Annuaire et Répertoire des compétences

PEOPLE@HES-SO
Annuaire et Répertoire des compétences

Aide
language
  • fr
  • en
  • de
  • fr
  • en
  • de
  • SWITCH edu-ID
  • Administration
ID
« Retour
Bastien Masse Malena

Bastien Masse Malena

Responsable de filière

Compétences principales

Réemploi des éléments de structure

Economie circulaire

Construction durable

Structures en béton armé

Structures existantes

Renforcement des structures

Béton fibré ultra-performant

Réalisations phares

Recherche
CUT - Concrete Upcycling Techniques
Publications
Digital Inventory of Swiss Construction Systems
Publications
Queens of Structure: Signatures d’ingénieures civiles
  • Contact

  • Enseignement

  • Recherche

  • Publications

Contrat principal

Responsable de filière

Téléphone: +41 22 558 77 98

Haute école du paysage, d'ingénierie et d'architecture de Genève
Rue de la Prairie 4, 1202 Genève, CH
hepia
Domaine
Architecture, construction et planification
Filière principale
Génie civil
Institut
inPACT - Institut du patrimoine construit, d'architecture, de la construction et du territoire
BSc HES-SO en Génie civil - Haute école du paysage, d'ingénierie et d'architecture de Genève
  • Statique
  • Béton armé
  • Travaux de Bachelor GC
  • Atelier de projet GC
  • Culture de l'ingénieur
  • Technologie des matériaux
MSc HES-SO en Engineering - HES-SO Master
  • Travail de Master - Orientation structures (GC)

En cours

CUT - Concrete Upcycling Techniques

Rôle: Requérant(e) principal(e)

Financement: Fond national suisse (FNS)

Description du projet :

Ce projet porte sur le réemploi d'éléments de dalles en béton armé sciés dans les structures de bâtiments en fin de vie. Des prototypes récents ont démontré la faisabilité de cette technique qui permet de réaliser d'importantes économies de CO₂ par rapport à la construction conventionnelle en béton armé. Ces réalisations ont également mis en évidence les limitations techniques, principalement liées à la conception structurelle et aux détails de connexion. Ce projet abordera donc les lacunes suivantes en matière de recherche :

  1. Il n'existe pas de méthodologie permettant d'évaluer la capacité structurelle des structures en béton armé coulées sur place lorsque les informations disponibles sont limitées.
  2. Il n'existe pas de modèle mécanique permettant de vérifier les éléments de dalles sciés dans des structures en béton armé coulées sur place, puis réutilisés dans de nouvelles structures, tout en prenant en compte des barres d’armature avec une longueur d'ancrage réduite.
  3. Il n'existe pas de méthodes de reconnexion éprouvées et adaptées à la variabilité des éléments en béton armé récupérés et conçues pour optimiser le comportement structurel de la nouvelle structure assemblée.

Enfin, le projet fournira des références pour l'évaluation environnementale et économique du réemploi des éléments de dalles en béton armé, ainsi que des lignes directrices de conception à destination des professionnels.

Equipe de recherche au sein de la HES-SO: Bastien Masse Malena , Romann Mathieu

Partenaires académiques: Fivet Corentin, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Durée du projet: 01.11.2025 - 31.10.2029

Montant global du projet: 455'000 CHF

Statut: En cours

Terminés

CoRR - Concrete Reuse for Reconstruction in Ukraine

Rôle: Requérant(e) principal(e)

Financement: EPFL Tech4Dev Exploration Grant

Description du projet :

Problem

The war in Ukraine has caused massive building damage and destruction, generating large amounts of concrete debris. This situation creates a significant challenge for waste management and increased CO₂ emissions related to reconstruction.

Challenge

How can we effectively deconstruct concrete elements from damaged buildings and make them available for reconstruction, thus reducing CO₂ emissions, minimizing waste, and lowering reconstruction costs?

Solution

The project proposes innovative selective deconstruction techniques to recover concrete elements, followed by their certification for reuse in new reconstruction projects, in compliance with local and international standards.

Impact

  • CO₂ emission reduction: Less production of new concrete, leading to lower CO2 emissions.

  • Waste reduction: Fewer debris sent to landfills.

  • Cost savings: Reduced expenses for producing new materials.

  • Increased sustainability: A circular approach to reconstruction.

Equipe de recherche au sein de la HES-SO: Bastien Masse Malena

Partenaires académiques: Fivet Corentin, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Partenaires professionnels: Ullal André, Skat Consulting; Avetian Eduard, Waste Recycling Association of Ukraine; Kotsiuba Valerii, Waste Recycling Association of Ukraine

Durée du projet: 01.09.2024 - 31.12.2024

Montant global du projet: 30'000 CHF

Url du site du projet: https://www.epfl.ch/innovation/domains/tech4dev/climate-challenges/concrete-reuse-for-reconstruction/

Statut: Terminé

RE:CRETE Prognosis: Prognosis of building stock potential for the upcycling REuse of cast-in-place reinforced conCRETE panels

Rôle: Collaborateur/trice

Requérant(e)s: Fivet Corentin, Ecole Polytechnique Fédérale de Lausanne (EPFL), Brühwiler Eugen, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Financement: EPFL ENAC Cluster Grant

Description du projet :

This project explores the possibilities and the potential to reuse obsolete cast-in-place reinforced concrete (RC) building parts for new structural applications. This uncommon upcycling reuse approach consists in carefully cutting the parts from soon-to-be demolished buildings, rehabilitating or strengthening them, and eventually reassembling them with custom connections and minimal transformation. The strategy reduces the need for new cement production, which is responsible for 8-9% of the anthropogenic CO2 emissions worldwide. It also effectively prevents the generation of construction and demolition waste.

We will address common misconceptions on the durability and deconstructability of cast-in-place RC parts through state-of-the-art reviews, including interviews with practitioners. Material availability will be studied through an historical analysis of the RC building stock, RC construction techniques and design standards. The reconstructability of reclaimed RC elements will be examined by identifying existing techniques available to assess, prepare and reassemble the elements. Points of attention are the ability of the reused parts to utilize their embedded reinforcement bars efficiently and the environmental impacts of the solutions, measured through life-cycle assessments.

At the crossroads of architecture and civil engineering, this pioneering project brings together three research fields: Component Reuse, Structural Design & Rehabilitation, and Construction History. It opens up a whole new field of research on the reuse of RC construction elements. The expected results will allow planners to have a better view of the potential stock of RC parts available for reuse and will provide preliminary principles for architects and engineers to develop structures with reused RC elements. 

Equipe de recherche au sein de la HES-SO: Bastien Masse Malena

Partenaires académiques: Fivet Corentin, Ecole Polytechnique Fédérale de Lausanne (EPFL); Brühwiler Eugen, Ecole Polytechnique Fédérale de Lausanne (EPFL)

Durée du projet: 01.07.2022 - 30.06.2024

Montant global du projet: 170'000 CHF

Url du site du projet: https://www.epfl.ch/schools/enac/recrete-prognosis/

Statut: Terminé

2025

Queens of Structure: Signatures d’ingénieures civiles
Article professionnel

Bastien Masse Malena, Elise Bérodier, Nicole Zahner, Nicole Parlow

Espazium Tracés, 2025 , no  3354, pp.  16-17

Lien vers la publication

Large Concrete Rubble as a New Structural Construction Material: Opportunities and Digital Processes for Load-Bearing Walls
Article scientifique

Maxence Grangeot, Bastien Masse Malena, Corentin Fivet, Stefana Parascho

Buildings, 2025 , vol.  15, no  9

Lien vers la publication

Résumé:

Concrete is amongst the most wasted materials on earth, mainly due to building demolitions. Currently, after a building’s end of life, concrete is crushed to be used as replacement gravel in new concrete mixes or for backfilling. Aiming to increase the circularity of the construction industry, this article presents design explorations and a design-to-construction process for building single-leaf masonry walls from large flat demolition concrete rubble, thus avoiding the need for further crushing after initial demolition. The proposed process augments the capabilities of conventional construction machinery with new digital control and sensing devices that are widely available on the market and at low cost. The design-to-construction process is implemented through methods of physical prototyping and load testing of a full-scale demonstrator to benchmark the construction precision and the structural, environmental, and productivity performances. The results highlight the viability and scalability of the approach, calling for a more systematic reuse of concrete rubble as it allows for the construction of low-carbon masonry structures while diverging part of concrete waste from downcycling and landfilling.

Design, construction and assessment of FLO: RE–the prototype of a low-carbon building floor made of reused concrete elements and steel profiles
Article scientifique

Célia Küpfer, Bastien Masse Malena, Numa Bertola, Corentin Fivet

Architecture, Structures and Construction, 2025 , vol.  5, no  1

Lien vers la publication

Résumé:

Carefully extracting reinforced concrete (RC) elements from soon-to-be demolished structures and reusing them directly as load-bearing elements in new buildings is an emerging circular low-carbon resource-management strategy. As floor construction typically accounts for a large share of a building’s upfront carbon footprint, designing floors with reused RC elements is a promising, yet little explored, approach to lower a building’s embodied carbon. This paper presents the concept, design, construction and assessment of a new load-bearing floor system for an office building made with reused saw-cut RC pieces and reused steel profiles. The system reuses the existing properties of widely discarded construction materials – RC and steel – and is dismountable. To demonstrate the system’s technical feasibility and assess its structural and environmental performance, a 30-m2 prototype – FLO:RE – is designed, built with elements reclaimed from local demolition sites, tested and finally dismantled. Reclaimed material property testing and prototype load testing confirm the structural-design safety. A Life-Cycle Assessment shows unprecedentedly low upfront embodied carbon, with results as low as 15 to 5 kgCO2e/m2, i.e., 80–94% reductions compared to conventional new RC flat slabs. This research demonstrates the untapped technical and environmental potential of reusing saw-cut RC elements in bending in structurally performant floor systems. Through this novel ultra-low-carbon solution, the study supports the efficient use of existing resources and calls for considering soon-to-be demolished RC and steel structures as potential mines of suitable quality materials ready to be reused locally.

Analysis and synthesis of existing procedures used to determine the reuse potential of building elements
Article scientifique

Barbara Lambec, Bastien Masse Malena, Corentin Fivet

Frontiers in Built Environment, 2025 , vol.  11, no  1511109

Lien vers la publication

Résumé:

Amid escalating concerns over CO2 emissions, resource depletion, and waste generation in construction, reusing building elements from obsolete structures presents a sustainable solution. This paper critically reviews 21 procedures used in Europe and the United States (2001–2021) for identifying and evaluating reusable elements prior to transformation projects. Developed by various stakeholders with differing goals, these procedures propose diverse approaches. The study provides a comprehensive overview of their purposes, evaluation criteria, data requirements, and timeframes. Comparative analysis reveals subjectivity in data inputs and a lack of consensus on the comprehensiveness required for effective evaluation. To move from recycling to reuse, the criteria must expand to include projective values, deconstruction processes, and second-use planning. These aspects are essential for assessing the availability, deconstruction, and reuse potential of building elements. The findings offer key insights for developing standardized, adaptable, and automatable assessment procedures that can facilitate efficient and effective reuse practices in future projects.

Digital Inventory of Swiss Construction Systems
Article scientifique

Aldrik Arceo, Bastien Masse Malena, Barbara Lambec, Corentin Fivet

Scientific Data, 2025 , vol.  12, no  1814

Lien vers la publication

Résumé:

Wider implementation of circular economy practices in the construction sector requires predicting the availability, properties, and qualities of reusable components beyond mere material quantities. However, data describing the geometric attributes, material properties, and modes of assembly of products available in current buildings is limited. To address this data gap, we present the Digital Inventory for Swiss Construction Systems (DISCS), a database structure that provides detailed information on component attributes in as-built load-bearing and insulating layers of existing buildings. The dataset currently provides granular data for 102 buildings in Switzerland, each digitalised into a building information model and parameterised using a custom library of 78 attributes. The database structure facilitates the operationalisation of an inventory for construction systems, providing a basis for stock prediction that supports the upscaling of component reuse in new projects. This data descriptor motivates the need for such a database, describes its ontology, and validates its use through a series of first-level analyses.

Réalisations

Médias et communication
Nous contacter
Suivez la HES-SO
linkedin instagram facebook twitter youtube rss
univ-unita.eu www.eua.be swissuniversities.ch
Mentions légales
© 2021 - HES-SO.

HES-SO Rectorat