Highlight your achievements on People@HES-SO More info
PEOPLE@HES-SO – Directory and Skills inventory
PEOPLE@HES-SO – Directory and Skills inventory

PEOPLE@HES-SO
Directory and Skills inventory

Help
language
  • fr
  • en
  • de
  • fr
  • en
  • de
  • SWITCH edu-ID
  • Administration
ID
« Back
Coscia Martina

Coscia Martina

Professeure assistante HES

Main skills

EMG & EEG

Motion analysis

Neurorehabilitation

Rehabilitation Robotics

Multimodal Biomechanics

Clinical evaluations

Evidence-based medtech

  • Contact

  • Teaching

  • Publications

Main contract

Professeure assistante HES

Desktop: B3-05

Haute école du paysage, d'ingénierie et d'architecture de Genève
Rue de la Prairie 4, 1202 Genève, CH
hepia
Faculty
Technique et IT
Main Degree Programme
Microtechniques

Human Engineering Laboratory -  HEPIA

Phone: +41 22 558 76 62

Desktop: Campus Biotech - B3-05

Haute école du paysage, d'ingénierie et d'architecture de Genève
Rue de la Prairie 4, 1202 Genève, CH

BSc HES-SO en Microtechniques - Haute école du paysage, d'ingénierie et d'architecture de Genève
  • MT_134 – Capteurs et actuateurs
  • MT_241 – Conception microtechnique 1
  • MT_251 - Conception microtechnique 2
  • MT_321 – Microtechniques 3

2024

Neurofeedback :
Scientific paper ArODES
une intervention innovante pour la rééducation des membres supérieurs après un accident vasculaire cérébral

Martina Coscia, Pierre Nicolo

Mains libres,  2024, 4, 263-268

Link to the publication

Summary:

Contexte : Le neurofeedback (NF) est une intervention basée sur l’imagerie motrice et les interfaces cerveau-ordinateur pour favoriser l’apprentissage de l’auto-modulation de l’activité neuronale. Il a été récemment introduit comme une intervention prometteuse pour la neuroréhabilitation des membres supérieurs (MS) après un accident vasculaire cérébral (AVC). Objectif : L’objectif est d’expliquer comment fonctionne le NF, de décrire quelles sont ses composantes, d’examiner comment il est utilisé et d’évaluer son efficacité dans la rééducation post-AVC. Développement : La neuroplasticité est à la fois un mécanisme clé et un objectif du NF. Différentes sources neuronales sont utilisées comme signaux d’entrée et de cible dans le NF, et le feedback visuel, acoustique et proprioceptif sont les principaux modes de retour de l’information aux patients. Son application est hétérogène (de moins de dix séances à plusieurs semaines), et il est utilisé en combinaison avec des interventions de rééducation traditionnelles et plus innovantes. Son efficacité pour la rééducation des MS reste à déterminer notamment en comparaison à d’autres interventions. Discussion : L’hétérogénéité de la population, de la conception et de l’application de NF, ainsi que le manque de connaissances sur la récupération motrice après un AVC, contribuent à son efficacité fluctuante. Une personnalisation s’avère indispensables pour en optimiser les résultats. Conclusion : Bien que son efficacité clinique ne soit pas établie, le NF est une intervention polyvalente de rééducation des MS après un AVC, applicable aux patients les plus graves avec de grandes possibilités de personnalisation.

2022

EMG Based Body-Machine Interface for Adaptive and Personalized Robotic Training of Persons with Multiple Sclerosis
Scientific paper

Camilla Pierella, Laura Pellegrino, Margit Muller, Coscia Martina, Matilde Inglese, Claudio Solaro, Maura Casadio

2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), 2022

Link to the publication

Upper Limb Sensory-Motor Control During Exposure to Different Mechanical Environments in Multiple Sclerosis Subjects With No Clinical Disability
Scientific paper

Camilla Pierella, Laura Pellegrino, Margit Muller, Matilde Inglese, Claudio Solaro, Coscia Martina, Maura Casadio

Frontiers in Neurorobotics, 2022

Link to the publication

A Novel Patient-Tailored, Cumulative Neurotechnology-Based Therapy for Upper-Limb Rehabilitation in Severely Impaired Chronic Stroke Patients: The AVANCER Study Protocol
Scientific paper

Claudia Bigoni, Sarah Zandvliet, Elena Beanato, Andrea Crema, Coscia Martina, Arnau Espinosa, Tina Henneken, Julie Hervé, Meltem Oflar, Giorgia Evangelista, Takuya Morishita, Maximilian Wessel, Christoph Bonvin, Jean-Luc Turlan, Niels Birbaumer, Friedhelm Hummel

Frontiers in Neurology, 2022

Link to the publication

2021

Effects of Hemispheric Stroke Localization on the Reorganization of Arm Movements within Different Mechanical Environments
Scientific paper

Laura Pellegrino, Coscia Martina, Camilla Pierella, Psiche Giannoni, Amel Cherif, Maddalena Mugnosso, Lucio Marinelli, Maura Casadio

Life, 2021

Link to the publication

2020

A multimodal approach to capture post-stroke temporal dynamics of recovery
Scientific paper ArODES

Camilla Pierella, Elvira Pirondini, Nawal Kinany, Martina Coscia, Christian Giang, Jenifer Miehlbradt, Cécile Magnin, Pierre Nicolo, Stefania Dalise, Giada Sgherri, Carmelo Chisari, Dimitri Van De Ville, Adrian Guggisberg, Silvestro Micera

Journal of neural engineering,  2020, vol. 17, no. 4, article 045002

Link to the publication

Summary:

Objective. Several training programs have been developed in the past to restore motor functions after stroke. Their efficacy strongly relies on the possibility to assess individual levels of impairment and recovery rate. However, commonly used clinical scales rely mainly on subjective functional assessments and are not able to provide a complete description of patients' neuro-biomechanical status. Therefore, current clinical tests should be integrated with specific physiological measurements, i.e. kinematic, muscular, and brain activities, to obtain a deep understanding of patients' condition and of its evolution through time and rehabilitative intervention. Approach. We proposed a multivariate approach for motor control assessment that simultaneously measures kinematic, muscle and brain activity and combines the main physiological variables extracted from these signals using principal component analysis (PCA). We tested it in a group of six sub-acute stroke subjects evaluated extensively before and after a four-week training, using an upper-limb exoskeleton while performing a reaching task, along with brain and muscle measurements. Main results. After training, all subjects exhibited clinical improvements correlating with changes in kinematics, muscle synergies, and spinal maps. Movements were smoother and faster, while muscle synergies increased in numbers and became more similar to those of the healthy controls. These findings were coupled with changes in cortical oscillations depicted by EEG-topographies. When combining these physiological variables using PCA, we found that (i) patients' kinematic and spinal maps parameters improved continuously during the four assessments; (ii) muscle coordination augmented mainly during treatment, and (iii) brain oscillations recovered mostly pre-treatment as a consequence of short-term subacute changes. Significance. Although these are preliminary results, the proposed approach has the potential of identifying significant biomarkers for patient stratification as well as for the design of more effective rehabilitation protocols.

Motor improvement estimation and task adaptation for personalized robot-aided therapy :
Scientific paper ArODES
a feasibility study

Christian Giang, Elvira Pirondini, Nawal Kinany, Camilla Pierella, Alessandro Panarese, Martina Coscia, Jenifer Miehlbradt, Cécile Magnin, Pierre Nicolo, Adrian Guggisberg, Silvestro Micera

BioMedical engineering onLine,  2020, vol. 19, article 33

Link to the publication

Summary:

Background: In the past years, robotic systems have become increasingly popular in upper limb rehabilitation. Nevertheless, clinical studies have so far not been able to confirm superior efficacy of robotic therapy over conventional methods. The personalization of robot-aided therapy according to the patients’ individual motor deficits has been suggested as a pivotal step to improve the clinical outcome of such approaches. Methods : Here, we present a model-based approach to personalize robot-aided rehabilitation therapy within training sessions. The proposed method combines the information from different motor performance measures recorded from the robot to continuously estimate patients’ motor improvement for a series of point-to-point reaching movements in different directions. Additionally, it comprises a personalization routine to automatically adapt the rehabilitation training. We engineered our approach using an upper-limb exoskeleton. The implementation was tested with 17 healthy subjects, who underwent a motor-adaptation paradigm, and two subacute stroke patients, exhibiting different degrees of motor impairment, who participated in a pilot test undergoing rehabilitative motor training. Results : The results of the exploratory study with healthy subjects showed that the participants divided into fast and slow adapters. The model was able to correctly estimate distinct motor improvement progressions between the two groups of participants while proposing individual training protocols. For the two pilot patients, an analysis of the selected motor performance measures showed that both patients were able to retain the improvements gained during training when reaching movements were reintroduced at a later stage. These results suggest that the automated training adaptation was appropriately timed and specifically tailored to the abilities of each individual. Conclusions : The results of our exploratory study demonstrated the feasibility of the proposed model-based approach for the personalization of robot-aided rehabilitation therapy. The pilot test with two subacute stroke patients further supported our approach, while providing encouraging results for the applicability in clinical settings.

Muscle activities in similar arms performing identical tasks reveal the neural basis of muscle synergies
Scientific paper

Laura Pellegrino, Coscia Martina, Maura Casadio

Experimental Brain Research, 2020

Link to the publication

2019

Exoskeleton for Gait Rehabilitation: Effects of Assistance, Mechanical Structure, and Walking Aids on Muscle Activations
Scientific paper

Alice De Luca, Amy Bellitto, Sergio Mandraccia, Giorgia Marchesi, Laura Pellegrino, Coscia Martina, Clara Leoncini, Laura Rossi, Simona Gamba, Antonio Massone, Maura Casadio

Applied Sciences, 2019

Link to the publication

Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke
Scientific paper

Coscia Martina, Maximilian Wessel, Ujwal Chaudary, José del R Millàn, Silvestro Micera, Adrian Guggisberg, Philippe Vaudens, John Donoghue, Niels Birbaumer, Friedhelm Hummel

Brain, 2019

Link to the publication

Training Muscle Synergies to Relearn Movement: Current Perspectives and Future Trends
Book chapter

Coscia Martina, Laura Pellegrino, Camilla Pierella, Elvira Pirondini, Jenifer Miehlbradt, Cécile Magnin, Nicolo Pierre, P Giannoni, Lucio Marinelli, Adrian Guggisberg, Maura Casadio, Silvestro Micera

,  Biosystems & Biorobotics. 2019,  - : -

Link to the publication

Resting-State Functional Connectivity in Stroke Patients After Upper Limb Robot-Assisted Therapy: A Pilot Study
Book chapter

Nawal Kinany, Camilla Pierella, Elvira Pirondini, Coscia Martina, Jenifer Miehlbradt, Cécile Magnin, Nicolo Pierre, Dimitri Van de Ville, Adrian Guggisberg, Silvestro Micera

,  Biosystems & Biorobotics. 2019,  - : -

Link to the publication

Personalizing Exoskeleton-Based Upper Limb Rehabilitation Using a Statistical Model: A Pilot Study
Book chapter

Camilla Pierella, Christian Giang, Elvira Pirondini, Nawal Kinany, Coscia Martina, Jenifer Miehlbradt, Cécile Magnin, Nicolo Pierre, Adrian Guggisberg, Silvestro Micera

,  Biosystems & Biorobotics. 2019,  - : -

Link to the publication

On the Potential of EEG Biomarkers to Inform Robot-Assisted Rehabilitation in Stroke Patients
Book chapter

Elvira Pirondini, Camilla Pierella, Nawal Kinany, Coscia Martina, Jenifer Miehlbradt, Cécile Magnin, Nicolo Pierre, Adrian Guggisberg, Silvestro Micera, L. Deouell, Dimitri Van de Ville

,  Biosystems & Biorobotics. 2019,  - : -

Link to the publication

Evolution of Cortical Asymmetry with Post-stroke Rehabilitation: A Pilot Study
Book chapter

Jenifer Miehlbradt, Camilla Pierella, Nawal Kinany, Coscia Martina, Elvira Pirondini, Matteo Vissani, Alberto Mazzoni, Cécile Magnin, Nicolo Pierre, Adrian Guggisberg, Silvestro Micera

,  Biosystems & Biorobotics. 2019,  - : -

Link to the publication

2018

Evaluating upper limb impairments in multiple sclerosis by exposure to different mechanical environments
Scientific paper

Laura Pellegrino, Coscia Martina, Margit Muller, Claudio Solaro, Maura Casadio

Scientific Reports, 2018

Link to the publication

How are Muscle Synergies Affected by Electromyography Pre-Processing?
Scientific paper

Paulina Kieliba, Peppino Tropea, Elvira Pirondini, Coscia Martina, Silvestro Micera, Fiorenzo Artoni

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018

Link to the publication

Data-driven body–machine interface for the accurate control of drones
Scientific paper

Jenifer Miehlbradt, Alexandre Cherpillod, Stefano Mintchev, Coscia Martina, Fiorenzo Artoni, Dario Floreano, Silvestro Micera

Proceedings of the National Academy of Sciences, 2018

Link to the publication

Motor Intention Decoding During Active and Robot-Assisted Reaching
Scientific paper

Aldo Pastore, Camilla Pierella, Fiorenzo Artoni, Elvira Pirondini, Coscia Martina, Maura Casadio, Silvestro Micera

2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), 2018

Link to the publication

Muscle synergies approach and perspective on application to robot-assisted rehabilitation
Book chapter

Coscia Martina, Peppino Tropea, Vito Monaco, Silvestro Micera

,  Rehabilitation Robotics. 2018,  - : -

Link to the publication

2017

EMG-based decoding of grasp gestures in reaching-to-grasping motions
Scientific paper

Iason Batzianoulis, Sarah El-Khoury, Elvira Pirondini, Coscia Martina, Silvestro Micera, Aude Billard

Robotics and Autonomous Systems, 2017

Link to the publication

EEG topographies provide subject-specific correlates of motor control
Scientific paper

Elvira Pirondini, Coscia Martina, Jesus Minguillon, José del R Millàn, Dimitri Van de Ville, Silvestro Micera

Scientific Reports, 2017

Link to the publication

2016

A Spectral Method for Generating Surrogate Graph Signals
Scientific paper

Elvira Pirondini, Anna Vybornova, Coscia Martina, Dimitri Van de Ville

IEEE Signal Processing Letters, 2016

Link to the publication

Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects
Scientific paper

Elvira Pirondini, Coscia Martina, Simone Marcheschi, Gianluca Roas, Fabio Salsedo, Antonio Frisoli, Massimo Bergamasco, Silvestro Micera

Journal of NeuroEngineering and Rehabilitation, 2016

Link to the publication

Muscle Synergies in Clinical Practice: Theoretical and Practical Implications
Book chapter

Diego Torricelli, Filipe Barroso, Coscia Martina, Cristiano Alessandro, Francesca Lunardini, E. Bravo Esteban, Andrea d'Avella

,  Biosystems & Biorobotics. 2016,  - : -

Link to the publication

2015

Influence of trajectory and speed profile on muscle organization during robot-aided training
Scientific paper

Aurelie Sadaka-Stephan, Elvira Pirondini, Coscia Martina, Silvestro Micera

2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015

Link to the publication

Effect of handedness on muscle synergies during upper limb planar movements
Scientific paper

Nicholas Duthilleul, Elvira Pirondini, Coscia Martina, Silvestro Micera

2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015

Link to the publication

Analysis of upper limb movement in Multiple Sclerosis subjects during common daily actions
Scientific paper

Laura Pellegrino, Giorgia Stranieri, E. Tiragallo, A. Tacchino, G Brichetto, Coscia Martina, Maura Casadio

2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015

Link to the publication

Muscle synergies and spinal maps are sensitive to the asymmetry induced by a unilateral stroke
Scientific paper

Coscia Martina, Vito Monaco, Chiara Martelloni, Bruno Rossi, Carmelo Chisari, Silvestro Micera

Journal of NeuroEngineering and Rehabilitation, 2015

Link to the publication

2014

Modular organization of reaching and grasping movements investigated using EEG microstates
Scientific paper

Jesus Minguillon, Elvira Pirondini, Coscia Martina, Robert Leeb, José Millan, Dimitri Van de Ville, Silvestro Micera

2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014

Link to the publication

A neurally inspired robotic control algorithm for gait rehabilitation in hemiplegic stroke patients
Scientific paper

Abhishek Mishra, Rohan Ghosh, Coscia Martina, Sunil Kukreja, Carmelo Chisari, Silvestro Micera, Yu Haoyong, Nitish Thakor

5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, 2014

Link to the publication

The effect of arm weight support on upper limb muscle synergies during reaching movements
Scientific paper

Coscia Martina, Vincent Cheung, Peppino Tropea, Alexander Koenig, Vito Monaco, Caoimhe Bennis, Silvestro Micera, Paolo Bonato

Journal of NeuroEngineering and Rehabilitation, 2014

Link to the publication

2013

Effects of early and intensive neuro-rehabilitative treatment on muscle synergies in acute post-stroke patients: a pilot study
Scientific paper

Peppino Tropea, Vito Monaco, Coscia Martina, Federico Posteraro, Silvestro Micera

Journal of NeuroEngineering and Rehabilitation, 2013

Link to the publication

Upper and Lower Limb Muscle Synergies: Lessons Learnt and New Ideas for Neurorehabilitation
Book chapter

Silvestro Micera, Vito Monaco, Peppino Tropea, Coscia Martina

,  Biosystems & Biorobotics. 2013,  - : -

Link to the publication

2012

Design and Evaluation of NEUROBike: A Neurorehabilitative Platform for Bedridden Post-Stroke Patients
Scientific paper

Vito Monaco, Giuseppe Galardi, Coscia Martina, Dario Martelli, Silvestro Micera

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012

Link to the publication

2011

Computational aspects of MN activity estimation: A case study with post-stroke subjects
Scientific paper

Coscia Martina, Vito Monaco, Marco Capogrosso, Carmelo Chisari, Silvestro Micera

2011 IEEE International Conference on Rehabilitation Robotics, 2011

Link to the publication

Cost function tuning improves muscle force estimation computed by static optimization during walking
Scientific paper

Vito Monaco, Coscia Martina, Silvestro Micera

2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011

Link to the publication

2010

Evaluation of leg joint trajectories while carrying out passive manipulation by NEUROBike
Scientific paper

Coscia Martina, Giuseppe Galardi, Vito Monaco, S Bagnato, Silvestro Micera

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010

Link to the publication

2009

Effects of an upper limb robot-mediated therapy on paretic upper limb in chronic hemiparetic subjects: A biomechanical and EEG-based approach for functional assessment
Scientific paper

Stefano Mazzoleni, Coscia Martina, G Rossi, S Aliboni, Federico Posteraro, Maria Chiara Carrozza

2009 IEEE International Conference on Rehabilitation Robotics, 2009

Link to the publication

Achievements

Media and communication
Contact us
Follow the HES-SO
linkedin instagram facebook twitter youtube rss
univ-unita.eu www.eua.be swissuniversities.ch
Legal Notice
© 2021 - HES-SO.

HES-SO Rectorat