Téléphone: +41 24 557 64 83
Bureau: W04
Terminés
Rôle: Collaborateur/trice
Requérant(e)s: IGT, Weber Nicolas, IGT
Financement: Divers industries romandes
Description du projet : Mandats de recherche et développement dans le domaine de la soudure, microsoudure et brasage.
Equipe de recherche au sein de la HES-SO: Garin Isabelle, Loperetti Murielle, Gendre Fabrice, Bonhôte Philippe, Müller Randoald, Magnenat Gabriel, Cereghetti Raffaele, Pinotti Laurent, Benoit Christian, M'ahmed Cyril, Wuhrmann Virginie, Murdter Xavier, Weber Nicolas
Partenaires académiques: IGT; Weber Nicolas, IGT
Durée du projet: 09.01.2020 - 31.12.2020
Montant global du projet: 28'900 CHF
Statut: Terminé
Requérant(e)s: IGT
Financement: SECO + SEFRI
Description du projet : Développement du Centre de compétence de soudage ESA dont SWI est le requérant principal dans le cadre de la communauté de recherche SWI - HEIG-VD.
Equipe de recherche au sein de la HES-SO: Cantova Jean-Daniel, Gendre Fabrice, Pinotti Laurent, M'ahmed Cyril, Murdter Xavier, Weber Nicolas
Partenaires académiques: IGT
Partenaires professionnels: SWI
Durée du projet: 30.01.2017 - 28.09.2020
Montant global du projet: 370'000 CHF
Requérant(e)s: CASB, Weber Nicolas, CASB
Equipe de recherche au sein de la HES-SO: Garin Isabelle, Loperetti Murielle, Gendre Fabrice, Bonhôte Philippe, Müller Randoald, Magnenat Gabriel, Cereghetti Raffaele, Pinotti Laurent, M'ahmed Cyril, Wuhrmann Virginie, Murdter Xavier, Weber Nicolas
Partenaires académiques: CASB; Weber Nicolas, CASB
Durée du projet: 06.03.2019 - 31.12.2019
Montant global du projet: 5'140 CHF
2007
Vuarnoz Didier, Kitanovski Andrej, Diebold Marc, Gendre Fabrice, Egolf Peter W.
physica status solidi (c), 2007, vol. 4, no. 12, pp. 4552-4555
Lien vers la publication
Résumé:
At present magnetic refrigeration shows a realistic potential to penetrate into some niche markets in the field of cold and hot “production”. It is well known that a refrigerator for cooling and a heat pump for heating are machines based on the same principle. A small review on magnetic heat pump studies is outlined and a simple engineering calculation scheme to determine the coefficient of performance for a magnetic heat pump with a rotary porous structure heat exchanger is presented. Magnetic heat flux line distributions are calculated by a 2‐d finite element method numerical simulation program with the objective to obtain high field's μ0H with not too heavy permanent magnets assemblies. The porous structures are geometrically optimised to obtain maximal magnetic field inductions. It is shown that for a water/ethylene‐glycol magnetic heat pump the coefficient of performance is higher than that of a conventional heat pump. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
2006
Sarlah Andreja, Kitanovksi Andrej, Poredos Alojz, Egolf Peter W., Sari Osmann, Gendre Fabrice, Besson Christophe
International Journal of Refrigeration, 2006, vol. 29, pp. 1332-1339
The operation behaviour of an active magnetic regenerator (AMR) with a wavy-structure, or a honeycomb-like regenerator bed was numerically investigated. The thermodynamic model was applied to a static regenerator and – in a generalized version – to a rotary type. The models take two-dimensional unsteady heat conduction in the magnetic material during the four basic processes of the AMR cycle into account. The numerical results were used to determine optimal arrangements of different magnetic materials in order to obtain larger temperature spans between both ends of the porous beds. Furthermore, a first study of magnetic flux lines in a porous rotary heat exchanger was performed.
2005
Fabrice Gendre, Christophe Besson
Proceedings of 1st IIF-IIR International Conference on Magnetic Refrigeration at Room Temperature, 27-30 September 2005, Montreux, Switzerland
A magnetic refrigerator with a cylindrical heat exchanger of porous periodic structure has been designed and numerical system performance calculations have been performed. This refrigerating machine, respectively heat pump device, can be operated with air or water as working fluid. In the article the design of the new refrigerator is outlined and the coupled basic equations of magnetism and thermodynamics are presented, which contain three independant characteristic geometrical quantities characterizing the heat exchanger structure. Magnetic fields, magnetic flux densities, and coefficients of performances (COP), etc. were investigated for magnetic inductions B0 between 1 and 5 Tesla. The obtained COP’s are promising high compared to conventional refrigeration equipment working with gas compression and expansion.
Réalisations